DIM 07/22/2002

3@ DIM

Distributed Information Management System

C.Gagpar, ECP Division, CERN

Abstract

DIM is a communication system for distributed / mixed environments, it provides a
network transparent inter-process communication layer. This manual provides an
overview of DIM's functionality and guidance on its usage.
Revison/Update Information: Verson 10.0, April
2002

(C) Copyright CERN except where explicitly stated otherwise. Permission to use and/or
redistribute thiswork is granted under the terms of the GNU General Public License, The
softwar e and documentation made available under the terms of thislicense are provided with no
warranty.

Contents (summary)

| ntroduction

Availability and Tools

User Manual (html) / User Manual (ps)
Download DIM for: Windows NT or UNIX

Other related documents

¢ DIM - A Distributed Information Management System for the Delphi experiment at
CERN (ps) Presented at: |EEE Eight Conference REAL TIME '93 on Computer
Applicationsin Nuclear, Particle and Plasma Physics (Vancouver, June 8-11 1993)

¢ A Highly Digtributed Control System for a Large Scale Experiment (ps) Presented at: 13th
IFAC workshop on Distributed Computer Control Systems- DCCS'95 (Toulouse, Sep
27-29 1995)

http://dim.web.cern.ch/dim/ Page 1 of 68

DIM 07/22/2002

® The Delphi experiment Control System (ps) Presented at: 1st IEEE Conference on the
Engineering of Complex Computer Control Systems (Ft. Lauderdale, Florida, Nov 6-10
1995)

Controlling a Large Physics Experiment; a Communication Issue (ps) Published in: IFAC
Journal - Control Engineering Practice (Vol.4 Num. 2, Feb 1996)

DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and

I nter -process Communication (ps) Presented at: I nternational Conference on Computing in
High Energy and Nuclear Physics (Padova, Italy, 1-11 February 2000)

http://dim.web.cern.ch/dim/ Page 2 of 68

dim _intro 07/22/2002

DIM
Distributed Information M anagement
System

I ntroduction

DIM, like most communication systems, is based on the client/server paradigm.

The basic concept in the DIM gpproach is the concept of "service". Servers provide servicesto clients. A
sarviceisnormaly aset of data (of any type or Sze) and it isrecognized by aname - "named services'. The
name space for servicesisfree.

Services are normaly requested by the client only once (at startup) and they are subsequently autometicaly
updated by the server ether a regular time intervas or whenever the conditions change (according to the
type of service requested by the client).

The client updating mechanism can be of two types, either by executing a calback routine or by updating a
client buffer with the new set of data, or both. In fact this last type works asif the clients maintain a copy of
the server's datain cache, the cache coherence being assured by the server.

In order to dlow for transparency (i.e, aclient does not need to know where a server isrunning) aswell as
to alow for easy recovery from crashes and migration of servers, a name server was introduced.

Servers "publish” their services by registering them with the name server (normaly once, a startup).

Clients "subscribe’ to services by asking the name server which server provides the service and then
contacting the server directly, providing the type of service and the type of update as parameters.

The name server kegps an up-to-date directory of al the servers and services available in the system. The
Figure shows how DIM components (Servers, Clients and the Name Server) interact.

) - Request
Register .-~ Y e, Service
Services.” E

., Service™,

{) o Imfo G

L Subscribe to Service -, .
et S N

f 1 i - 4
| Server) sewicenas - Client)
A N

T \—a’/
Commands

http://dim.web.cern.ch/dim/dim_intro.html Page 3 of 68

dim _intro 07/22/2002

Whenever one of the processes (a server or even the name server) in the system crashes or dies dl
processes connected to it will be notified and will reconnect as soon asit comes back to life. This feature not
only alowsfor an easy recovery, it dso dlows for the easy migration of a server from one machineto
another (by stopping it in the first machine and starting it in the second one), and so for the possibility of
baancing the machine load of the different workstations.

http://dim.web.cern.ch/dim/dim_intro.html Page 4 of 68

dim_tools 07/22/2002

DIM
Distributed Information M anagement
System

Availability and Tools

The DIM system is currently available for mixed platform environments comprising the operating systems :
VMS, Unix, Linux, Windows NT and the redl time OSs. OS9, LynxOs and VxWorks. It uses as network
support TCP/IP.

The differences in data representation (e.g.: byte ordering, floating point format, data dignment and data
type sizes) over different machines are automaticaly (trangparently) negotiated between the server, the client
and the name server.

All DIM functiondity is available as server and client libraries providing C++, C and Fortran cdlable
interfaces.

The behaviour of complex ditributed gpplications can be very difficult to understand without the help of a
dedicated tool. The DIM System provides atool - DID, the Digtributed Information Display - that alows
the visudization of the processes involved in the application as shown in the Figure.

DID dlowsthe visudisation of the Servers composing the gpplication: they can al be desplayed (asin the
example) or they can be selected by the machine where they are running or by the Services they provide.

DID - DM Information Display L

[Fie View Cooumand Hap |For each Server the list of current clients can be
= mﬁ‘ﬂmﬁm Avallable displayed providing information on their process
HPCO_LES REMOTE SM1 TP-cPiTS names or PIDs and machine names.
HIFE_131001CT) op S BIG_RROTHER M a Client info
VSAT_LES D1_SC._FBOL RIF1_DATA_LOGGER Clients of BIG_BROTHER_SMI are :
TOF SC_ YOLT REMOTES s8I ¥D-LES/LES Frocess HAC_OPERATOR _2 on node asdehacernch
Process W UESGASPAR_T on node vedl03.cern.ch
TOF_SC_FB VSAT_SC_FB QUALITY_MO_VSAT Process AUGUSTINUS_1 on node axdecp.cernch
SOL_PRESSURE LOG VSAT SC_SMI QUALITY MO HFC Process AUGUSTINUS_3 on node axdeop.cem.ch

Process 1349 on node fora03, SLAC Stanford EDU
TOF_LES GAS_GAS HPC::FIF_SERVER

0K Cancel

And thelist of Services provided can be visudised (together with information about the server itsdf like its
PID and the machine whereit is running):

http://dim.web.cern.ch/dim/dim_tools.html Page 5 of 68

dim_tools 07/22/2002

By Sedlecting one of the servicesits contents can be
displayed:

http://dim.web.cern.ch/dim/dim_tools.html Page 6 of 68

07/22/2002

dim user
DIM
Distributed Information M anagement
System
User Manual

This chapter describes the DIM interface, i.e. the functionality provided by the server and client libraries as
well as some examples on how they can be used.

Two different interfaces are available:

® The C++ Interface
® TheC and Fortran Interfaces

http://dim.web.cern.ch/dim/dim_user.html Page 7 of 68

Dim
library : DIM
Authors: C. Gaspar and Ph. Charpentier

Version: 1.0

07/22/2002

Please have alook at afew simple examplesfirst.

Server Classes Client Classes Utility Classes
o Class: DimSaver ® Class: DimClient o Class: DimBrowser
o (Class: DimSarvice ® (Class: Diminfo o Class: DimTimer
o (Class: ® Class: DimCurrentinfo
DimCommeand ? Class: DimRpcinfo
® Class: DimRpc ? Class: DimStampedinfo

? Class: DimUpdatedinfo

Lagt update: 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimCpp.html

Page 8 of 68

A very smple server: 07/22/2002

A Few Simple Examples

The Server publishes one service (integer value)
#include <dishxx>

int main()

{
int run=0;
DimService runNumber("DELPHI/RUN_NUMBER" run);
DimServer:start("RUN_INFO");

..

The Client subscribesto the service,

reguesting it to be updated every 5 seconds.

|f the serviceisnot availablethevalue" -1" should bereceived
instead.

#include <dic.hxx>

int main()
{

Diminfo runNumber("DELPHI/RUN_NUMBER" 5,-1);
..

cout << "Run Number " << runNumber.getint() << end!;

}

The Server publisnesone service (integer value)
and updatesit from timeto time (when it changes):

#indude <dishxx>

int main()
{
int run=0;
DimService runNumber("DELPHI/RUN_NUMBER" run);
DimServer::sart("RUN_INFO");
while(1)
{
In ..
runt++;
runNumber.updateService();
}
}

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 9 of 68

A very smple server: 07/22/2002

The Client subscribesto one service and
executes a method when the service gets updated
(when the server executes updateService()):

#indude <dic.hxx>

class RunNumber : public Diminfo

{
void infoHandler()

{
cout << "Run Number " << getInt() << end;

}
public :
RunNumber() : Diminfo("DELPHI/RUN_NUMBER",-1) {};
1
int main()
{
RunNumber runNumber;

while(1)
pause();

The Server can recelve commands (a string):
#include <dishxx>

class Command: public DimCommand
{

void commandHandler()

{
cout << "Received : " << getString() << endl;

}
public:
Commeand() : DimCommand("'DELPHI/TEST/CMND","C");
H
int main()
{

Command cmnd;
DimServer::gat("TEST");
while(1)
pause();
}

The client sends a command:

#incdude <dic.hxx>

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 10 of 68

A very smple server: 07/22/2002

int main()
{
DimClient::sendCommand(" DEL PHI/TEST/CMND" "DO_IT");

}

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 11 of 68

DimServer 07/22/2002

Class. DimServer

Library: DIM

Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

Tobeused by DIM Servers- Implements mainly static methodsrelated to the Server.

DimServer::gart(<server name>) should be called after DimServicesand/or DimCommands

have been created, in order toregister them within the DIM Name Server.

DimServices created after " start” has been called will be automatically registered.

The classDimServer can beinherited by user classes wishing to handle multiple
DimCommands

in the same class. Please refer to Usage for examples on the use of DimServer.

Constructors:
¢ public DimServer () ;
Public Function :

* dsatic void sart (char * name) ; Starts the Server i.e. Publishes dl declared services and
darts serving Client Requests. Services declared afterwards may or may not be automaticaly
registered within the Name Server depending on the autoStart flag.

* datic void autoStartOn () ; Indtructs the sarver to immediately register any new sarvices after
the firg start(name) to the name server without waiting for anew start(name). Thisisthe defaullt.

¢ satic void autoStartOff () ; Instructs the server to wait for anew start(name) in order to
register newly declared services.

¢ saticint getClientld () ; Get Current Client Identifier, returns anon-zero id only if the server
is currently serving a Client, i.e ingde the virtua methods : commandHandler and dientExitHandler.

¢ static char *getClientName () ; Get Current Client Name, returns a non-zero name of the
form "task@node' only if the server is currently serving a Client.

¢ gatic addClientExitHandler (DimServer *handler) ; Indruct the Server to execute the
virtua method dientExitHandler whenever "specid” dlientsdie. A dient can declare himsdlf hasa
"gpecid" dient by executing setExitHandler or the Server can choose a client to be one of the
"gpecid"” dlients by using the two next methods.

* datic setClientExitHandler (int clientld) ; Satsadlient exit handler for the dient which
clientld was returned from getClient().

¢ datic clear ClientExitHandler (int clientld) ; Cancelsthe exit handler for clientld.

¢ virtua void clientExitHandler () ; To be overloaded by the user. Gets called when "specid”
clientsdie.

Virtual methods for Command Handling

http://dim.web.cern.ch/dim/DimServer.html Page 12 of 68

DimServer 07/22/2002

* virtual void commandHandler (') ; The Server can be a DimCommand handler when
multiple commands are to be treated as in the example.

¢ DimCommand* getCommand () ; Can be used insde "commandHandler" in order to return
apointer to the command beeing handled.

Usage :

The DimServer classimplements Server functions - the most important is" start™ .
Example:

DimService runNumber("DELPHI/RUN_NUMBER",123);
DimServer::sart(" Del phiServer");

DimServer can be used as a base class when the user class wishesto handle DimCommands
usng

Handlers.

Example:

classHandler : public DimServer
{
DimCommand cmd;
intval;
void commandHandler() { va = cmd.getint(); };
public:
Handler() :
cmd("TEST/CMD", "I", this) {va =0; };
¥

The DimServer can also be used to set up exit handlersto be executed when " special” clients
die.
Theingallation of a exit handler for a client can be donein two ways:

- Theclient decidesit isone of the " special” ones. Example: The Server should die when the
client dies.

Server Part:

class ClientHandler : public DimServer
{
public:
ClientHandler() {
DimServer::addClientExitHandler(this);
DimServer::start("TheServer"); };
void clientExitHandler() {
cout << "Client " << getClientName() << " died" << endl;
exit(0);
|3
¥

http://dim.web.cern.ch/dim/DimServer.html Page 13 of 68

DimServer 07/22/2002

Client Part:

main()
{
DimClient::sstExitHandler("TheServer™);

}

- The server decidesaclient is" special” - example: The Server wantsto be" released"”
when the
client that " allocated" it dies.

class Allocation : public Server
{
DimCommand *dlocate;
int allocationState;
public:
Allocation() {
dlocate = new DimCommand("SRV/ALLOCATE","I" this);
DimServer::addClientExitHandler(this);
DimServer::start("SRV"};
void commandHandler(); {

if (getint()==1){ /I Client Allocated
alocateState = 1,
DimServer::setClientExitHandler(DimServer::getClientld()); // Set the exitHandler for this
client
}
else{ /I Client Released
allocateState = 0;
DimServer::clearClientExitHandler(DimServer::getClientld()); // Clear the exitHandler for
thisdient
}
void clientExitHandler() { Il Client died (while Allocated) - Release
cout << "Client " << getClientName() << " died" << end!;

dlocateState = O;
s
h

Last update : 02/15/99 17:40:42 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimServer.html Page 14 of 68

DimService 07/22/2002

Class. DimService

Library: DIM

Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

Tobeused by DIM Servers- Implements Service creation.

DimService constructorsadd a DIM Serviceto thelist of known services.

The DimServices will only be registered (published) and served after " Starting” the
DimServer.

Pleaserefer to Usage for examples of DimServices.

Constructors:

First parameter isthe Service Name. Sincethe clients might request the service at regular time

intervalsthe value parameter should be the address of a variablethat hasa livetime similar to
the

DimServiceitself.

¢ public DimService (char * name, int & value) ;

* public DimService (char * name, float & value) ;

* public DimService (char * name, double & value) ;

* public DimService (char * name, char * value) ;

* public DimService (char * name, char * format, void * value, int size) ; Theformat
parameter specifies the contents of the structure in the form T:N[; T:N]*[;T] where T istheitem type:
(Dnteger, (C)arachter,(L)ong,(S)hort,(F)loat,(D)ouble and N is the number of such items. The type
aone at the end means dl following items are of the same type. Example: "1:3;F:2,C" means 3
Integers, 2 Floats and Characters until the end. The format parameter is used for communicating
between different platforms.

Destructors:
* public~ DimService () ;
Public Functions:

Update M ethods
All update methods return the number of clients updated.

* int updateService () ; The current vaue of the same variable

* int updateService (int &value) ; The variable changed address (and size)
* int updateService (float &value) ;

* int updateService (double &value) ;

* int updateService (char * string) ;

http://dim.web.cern.ch/dim/DimService.html Page 15 of 68

DimService 07/22/2002
* int updateService (void *structure, int sSize);
Selective Update M ethods
Like the Update methods but do not update all clients.
- Update only the current client (if insde a Command callback) - clientlds=0
- Update thelist of clients specified by an array of client 1ds (terminated by 0).
Client Ids can be obtained by DimServer::getClientld() insde a Command callback

* int selectiveUpdateService (int *clientlds) ;

* int selectiveUpdateService (int &vaue, int *clientlds) ;

* int selectiveUpdateService (float &value, int *clientlds) ;

* int selectiveUpdateService (double &value, int *clientlds) ;

* int selectiveUpdateService (char * string, int *clientlds) ;

* int selectiveUpdateService (void *structure, int size, int *clientlds);

Methods for Time Stamping and Quality flag (only meaningfull when the client
requests it

by using DimStampedinfo). The Server time stamps the service and sets the quality
flag to zero

when this feature is requested by the client but the following methods allow the user to
override the defauilt.

These settings will be sent to the client with the next update of service data.

¢ void setQuality (int quality) ; Thequdity flag - zero by defauit
* void setTimestamp (int secs, int millisecs) ; Thetime stamp - Set by defauit to the current
time.
Usage :
DimService creation example:

- The Server Updatesthe service (i.e. sendsit to theclient) whenever the contents change

int run = 123;
DimService runNumber("DELPHI/RUN_NUMBER" run);
DimServer::sart(" D phiServer");

run++;
runNumber.updateService();

- The Server Does not explicitly Update the service: it will get updated (i.e. sent to theclient)
with the current contents at the timeinterval specified by each client.

float trigger_rate;
DimService runNumber("DELPHI/TRIGGER_RATE" trigger_rate);
DimServer::sart("DedphiServer");

http://dim.web.cern.ch/dim/DimService.html Page 16 of 68

DimService 07/22/2002

trigger_rate = calculate trigger_rate();

Last update: 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimService.html Page 17 of 68

DimCommand 07/22/2002

Class: DimCommand

Library: DIM

Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

Tobeused by DIM Servers- Implements Command creation.
DimCommand constructors add a DIM Command to thelist of known services.
The DimCommand will only beregistered (published) and served after " Starting” the

DimServer.
DimCommands can betreated either by a command handler (asynchronoudy) or be queued and
retrieved to the user when requested, pleaserefer to Usage for examples.

Constructors:

* public DimCommand (char * name, char * format) ; Create a DimCommand. Format
parameter specifies the contents of the expected data in the form T:N[; T:N]*[;T] where T isthe item
type: (I)nteger, (C)arachter,(L)ong,(S)hort,(F)loat,(D)ouble and N is the number of such items. The
type done a the end means dl following items are of the same type. Example: "1:3;F:2,C" means 3
Integers, 2 Floats and Characters until the end. The format parameter is used for communicating

between different platforms.
* public DimCommand (char * name, char * format, DimCommandHandler *

handler); Format parameter as above. A handler can be specified if a different dassis handling the
command (pecidly useful if adassis handling multiple commands, asin the example).

Destructors:
¢ public~DimCommand () ;
Public Functions:
Generic
¢ char* getName () ; Get the command name.
Without a commandHandler

* int getNext () ; Get Next queued command. returns 1 if there is a command queued, O
otherwise. After agetNext isissued and until the next one the methods in " Access to the Command
Datd' can be used in order to retrieve the command data

With a Handler

http://dim.web.cern.ch/dim/DimCommand.html Page 18 of 68

DimCommand

07/22/2002

* virtual void commandHandler (') ; To be overloaded if the user specified ahandler. The
methods in "Access to the Command Data' can be used indde the Handler in order to retrieve the

commeand data:
Access to the Command Data

* intgetint () ; For aninteger command.

* float getFloat () ; A float.

* double getDouble () ; A double.

¢ char* getString () ; A character string.

* void* getData () ; A structure or avector.

* int getSize (') ; Thesize of the command data.

To find out which command it is (if same handler for multiple commands)

¢ DimCommand * getCommand () ; The command received (See example)

Usage :

DimCommands can be created in three different ways
Examples:

- Without a handler:

DimCommand runCmnd("DELPHI/RUNCMND","C");
DimServer::sart(" D phiServer");

while(1)
{
seep(5);
while(runCmnd.getNext()) {
/ltreat the command
char *cmnd = runCmnd.getString();

}

- Using a commandHandler

class RunCmnd : public DimCommand // In order to inherit "commandHandler"

{

/I Overloaded method commandHandler called whenever commands arrive,
void commandHandler()
{ Ihreat the command
cout << "command " << getString() << " received” << endl;
}
public:
/I The congtructor initidizes the DimCommand
RunCmnd() : DimCommand("/DELPHI/RUNCMND", "C") {};

};

http://dim.web.cern.ch/dim/DimCommand.html

Page 19 of 68

DimCommand 07/22/2002
- Usng a CommandHandler for multiple Commands

class RunCmnds : public DimServer // In order to inherit "commandHandler”
{
DimCommand * runNumbe;
DimCommand *runType;
/I Overloaded method commandHandler called whenever commands arrive,
void comandHandler()

{
if(getCommand() == runNumber)

{
int run = getint();
I/ treat runNumber command
}
else
{
char *type = getString();
/] treat runType command
}
}
public:
/I The constructor creates the Commands
RunCmnds()
{
runNumber = new DimCommand("/DELPHI/RUN_NUMBER/CMD", "I", this);
runType = new DimCommand("/DELPHI/RUN_TYPE/CMD", "C", this);

}
h

Last update: 02/19/99 12:49:03 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimCommand.html Page 20 of 68

DimService 07/22/2002

Class. DimRpc

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

Tobeused by DIM Servers- Implements RPC Service creation.

DimRpc constructorsadd a DIM Service of RPC typetothelist of known services.

The DimRpcs as DimServices will only be registered (published) and served after " Starting"
the DimServer.

Pleaserefer to Usage for an example of DimRpc creation.

Constructors:
First parameter isthe Service Name.

* public DimRpc (char * name, char * format_in, char *format_out) ; Theformat
parameters specifies the contents of the data to be received (format_in) and to be sent in response
(format_out) in the form T:N[; T:N]*[;T] where T isthe item type: (I)nteger, (C)haracter, (L)ong,
(S)hort, (F)loat, (D)ouble and N is the number of such items. The type aone at the end means all
following items are of the same type. Example: "I:3;F:2;,C" means 3 Integers, 2 Floats and
Characters until the end. The format parameters are used for communicating between different
platforms.

Destructors:
* public~DimRpc () ;
Public Functions :
Handler: Gets Called when an RPC is requested by a Client (DimRpclnfo)
* virtual void rpcHandler () ; // Hasto be provided by the user.
Get Methods: To beused insiderpcHandler in order to get the data received from the client

* intgetint () ; / GetanInteger

* float getFloat () ;

* double getDouble ();

* char *getString ();

* int getSize (); //Get the size of the data (for complex types)
¢ void *getData (); /Get the data (for complex types)

Set Methods: To be used insderpcHandler in order to send the result back to the client

http://dim.web.cern.ch/dim/DimRpc.html Page 21 of 68

DimService 07/22/2002

int setData (int &value) ; //Send back an Integer

int setData (float &value) ;

int setData (double &value) ;

int setData (char * string) ;

int setData (void *data, int Size); //Send back complex data

Usage :
DimRpc example:
#include"dishxx"

class Rpclnt : public DimRpc
{

void rpcHandler()
{

int val;

va = getint();

val++;

setData(va);

}

public:
Rpclnt(char *name): DimRpc(name,”1","1") { };
b

main()
{
Rpcint testRpclnt("TESTRPC/INT");

DimServer:gat("TESTRPC");
while(1)
paLise();

Lagt update: 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimRpc.html Page 22 of 68

DimClient 07/22/2002

Class. DimClient

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

Tobeused by DIM clients - implements static methods relating to the Client
Mainly Sending Commandsto Servers.
The methods sendCommand(...) will wait for the command to be actualy sent to the Server
and return a completion code of :
1-if it was successfully sent.
0-if it couldn't be delivered.
The exception beeing: if the user callsthis method inside a Handler (infoHandler,
serviceHandler,
commandHandler and clientExitHandler) the command will be sent but without waiting for
reception
and thereturn codeisnot reliable (in order to avoid deadlocks).

The methods sendCommandNB(...) are Non Blocking, i.e. they do not wait for the command to
be sent.

They should be used inside callback routinesto avoid deadlocks

Public Functions:

¢ saticint sendCommand (char * name, int data) ; /Send Integer as Command

¢ gatic int sesndCommand (char * name, float data) ; //Send Float as Command

¢ saticint sendCommand (char * name, double data) ; //Send Double

¢ daticint sendCommand (char * name, char * data) ; // Send a Character String

* daticint sendCommand (char * name, void * data, int datasize) ; //Send astructure
or avector

¢ gaticint sesndCommandNB (char * name, int data) ; //Send Integer as Command

¢ saticint sendCommandNB (char * name, float datd) ; //Send Float as Command

¢ daticint sendCommandNB (char * name, double data) ; /Send Double

* daticint sendCommandNB (char * name, char * data) ; // Send a Character String

¢ saticint sendCommandNB (char * name, void * data, int datasize) ; //Send a
structure or a vector

¢ dsatic setExitHandler (char * serverName) ; //inform the Sarver that this client would like
the Server to execute an ExitHandler when it dies.

Methods for Service Info Handling

http://dim.web.cern.ch/dim/DimClient.html Page 23 of 68

DimClient 07/22/2002
* virtual void infoHandler (') ; The method to be overloaded by the user, DimClient can be
used as a base class when the user wishes to handle multiple Diminfo Services using the same

handler. Example.

Diminfo* getinfo () ; Can beused inside "infoHandler" in order to return a pointer to the
Diminfo service currently beeing handled.

Usage:
setExitHandler Example

sendCommand Example:
main()
{
DimClient::sendComamnd("SRV/ALLOCATE", 1);

DimClient::sendCommand("SRV/ALLOCATE", 0);
}

Last update : 02/19/99 12:49:03 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimClient.html Page 24 of 68

DimiInfo 07/22/2002

Class. Diminfo

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

To beused by DIM clients - implements DIM service subscription and reception
DimlInfo constructors subscribeto DIM services.
Dimlnfo Services can berequested to be updated when the contents change and/or at regular

timeintervals.
Theservicesarereceived at startup, when the server updatesthem or after atimeout limit if

the parameter "time" is specified.
Thisgivesthe following possibilities:

- Recelvethe service at startup and then
- Recelve the service only when the server updatesit
-no"time" parameter
- Recelve the service at regular timeintervals (if the server doesn't updateiit) or
- Recelve the service at regular intervals and also when the server updatesit
- some"time" parameter
- Recelve the service when the server updatesit, but also after a timeout (to make surethe
server isalive)
- longish "time" parameter

Note: The parameter "time" issent tothe server. It isthe server that updatesthe services
even on thetime basis

Pleaserefer to Usage for examples.
Constructors:
Constructorsfor Servicesupdated only by the server

* public Dimlnfo (char * name, int nolink) ; Integer Service

* public DimlInfo (char * name, float nolink) ; Float Service

* public Dimlnfo (char * name, double nolink) ; Double Service

* public DimlInfo (char * name, char * nolink) ; Character String Service

¢ public DimlInfo (char * name, void * nolink, int nolinksize) ; Structure (mix types)
Service

Constructorsfor Services updated (also) on atime basis

* public DimlInfo (char * name, int time, int nolink) ; Integer Service
* public DimlInfo (char * name, int time, float nolink) ; Float Service
* public DimlInfo (char * name, int time, double nolink) ; Double Service

http://dim.web.cern.ch/dim/Diminfo.html Page 25 of 68

DimiInfo 07/22/2002

public DimInfo (char * name, int time, char * nolink) ; Character String Service
public Dimlnfo (char * name, int time, void * nolink, int nolinksize) ; Structure (mix
types) Service

Congructorsfor Serviceswith a Handler for multiple Services (without time)

public DimlInfo (char * name, int nolink, DiminfoHandler * handler) ; Integer
Service

public Dimlnfo (char * name, float nolink, DiminfoHandler * handler) ; Float
Service

public Dimlnfo (char * name, double nolink, DiminfoHandler * handler) ; Double
Service

public Dimlnfo (char * name, char * nolink, DiminfoHandler * handler)

; Character String Service

public DimlInfo (char * name, void * nolink, int nolinksize, DiminfoHandler *
handler) ; Structure (mix types) Service

Constructorsfor Serviceswith a Handler for multiple Services (with time)

public Dimlnfo (char * name, int time, int nolink, DiminfoHandler * handler)

; Integer Service

public Dimlnfo (char * name, int time, float nolink, DiminfoHandler * handler)

: Float Service

public Dimlnfo (char * name, int time, double nolink, DimlinfoHandler * handler)
: Double Service

public Dimlnfo (char * name, int time, char * nolink, DiminfoHandler * handler)
; Character String Service

public DimlInfo (char * name, int time, void * nolink, int nolinksize,
DiminfoHandler * handler) ; Structure (mix types) Service

Destructors:

public ~ DimInfo () ; Dim Service Destructor

Public Functions:

char* getName () ; Get the Service Name

void* getData () ; Get the Service Contents

int getint () ; Get Integer Service Contents

float getFloat () ; Get Float Service Contents

double getDouble () ; Get Double Service Contents

char* getString () ; Get String Service Contents

Int getSize () ; Get the Service Size.

virtua void infoHandler () ; To be overloaded if Handler specified

Usage :

DIM Client Services (Diminfo) can be used in several ways.

http://dim.web.cern.ch/dim/Diminfo.html Page 26 of 68

DimiInfo 07/22/2002

- The user variable is of type Diminfo
Example : The Serviceis received when the Server updatesit

main()

{
Diminfo runNumber("DELPHI/RUN_NUMBER", -1);
while(1)
{

cout << runNumber.getint() << endl;

Example : The Serviceisreceived when the Server updatesit and every 30 seconds
otherwise

main()
{
Diminfo runNumber("DELPHI/RUN_NUMBER", 30, -1);

while(1)
{

cout << runNumber.getint() << endl;

}

Example : The Serviceisreceived at regular intervals of 5 seconds (the Server does
not explicitly updateit)

main()

{
Diminfo triggerRate(" DELPHI/TRIGGER_RATE", 5, -1.0);
while(1)
{

cout << triggerRate.getF oat() << end!;

}

}

- Inheritance: The user class inherits from Diminfo
Example:

class RunNumber: public Diminfo

http://dim.web.cern.ch/dim/Diminfo.html Page 27 of 68

DimiInfo 07/22/2002

{
public:
I subscribe to service with handler
RunNumber(): Diminfo("DELPHI/RUN_NUMBER", -1) {}
void infoHandler() { cout << getint() << endl;} // update handler
1

- A class subscribes to many DimServices with only one handler
Example:

classRumVars : public DimClient // inheritance necessary because a handler isto be used

{
Diminfo runNumber;
Diminfo runType;
public:
RunVars.
runNumber("DELPHI/RUN_NUMBER", -1, this), // subscribe with handler
runType("DELPHI/RUN_TYPE", "not available", this), // subscribe with handler
{}
void infoHandler() {
Diminfo *curr = getInfo() // get current Diminfo address
if(curr == &runNumber) { int run = curr->getint() };
else{ char *type = curr->getString() };
/letc.
}
H

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/Diminfo.html Page 28 of 68

DimCurrentinfo 07/22/2002

Class. DimCurrentinfo

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

Tobeused by DIM clients - implements blocking DIM service reception
DimCurrentlnfo constructors subscribeto DIM services.
Required Parameters: the Service Name and the value to receive when service not available
The methods get() wait for the Serviceto arriveif it hasnot arrived yet. Once the service
contents
arereceived the Serviceisdiscarded (The client disconnects from the server).

Constructors:

* public DimCurrentlnfo (char * name, int nolink) ; Integer Service

* public DimCurrentinfo (char * name, float nolink) ; Float Service

* public DimCurrentlnfo (char * name, double nolink) ; Double Service

* public DimCurrentinfo (char * name, char * nolink) ; Srring Service

¢ public DimCurrentinfo (char * name, void * nolink, int nolinksize) ; Structure
Service

Destructors:
* public~ DimCurrentinfo () ;
Public Functions:

* intgetint () ; Get Integer Service contents

* float getFloat () ; Get Float Service Contents

* double getDouble () ; get Double Service Contents
* char* getString () ; Get String Service contents

* void* getData () ; Get the Service contents

* intgetSize () ; Get Service contents Size

Usage :
Example:
DimCurrentinfo runNumber("DELPHI/RUN_NUMBER" -1);
cout << runNumber.getint() << endl;

Last update : 02/11/99 17:42:12 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimCurrentinfo.html Page 29 of 68

DimService 07/22/2002

Class. DimRpclnfo

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

To beused by DIM clients - implements RPC subscription (blocking or non-blocking)
Required Parameters. the Service Name and the value (nolink) to receive when RPC service
not available
The methods set() and get() are used to send and receive data to and from the server.
Pleaserefer to Usage for examples on how to use DimRpcl nfo.

Constructors:

¢ public DimRpclnfo (char * name, int nolink) ; Integer reception expected

* public DimRpclnfo (char * name, float nolink) ;

* public DimRpclnfo (char * name, double nolink) ;

* public DimRpclnfo (char * name, char * nolink) ;

* public DimRpclnfo (char * name, void * nolink, int nolinksize) ; Complex data

Destructors:
* public~DimRpcinfo () ;
Public Functions::
Set Methods: Tobeused to send the RPC request (data) to the Server

* int setData (int &value) ; //Send an Integer
* int setData (float &value) ;

* int setData (double &value) ;

* int setData (char * string) ;

int setData (void *data, int Size); //Send complex data

Handler: If the user implementsiit, it gets Called when an RPC answer is received
(DimRpc)

¢ virtua void rpclnfoHandler () ; // Can be provided by the user for non-blocking reception
of RPCs

Get Methods: To get the data received from the server: Can be used for blocking reception of
RPCsor
inside rpclnfoHandler in order to get the data received from the server

http://dim.web.cern.ch/dim/DimRpclnfo.html Page 30 of 68

DimService

int getint () ; // Get an Integer
float getFloat () ;

double getDouble ();

char *getString ();

void *getData (); //Get the data (for complex types)
Usage:
DimRpcl nfo non-blocking example:
#include "dic.hxx"

class Rpc : public DimRpclinfo
{
void rpcinfoHandler() {
int vain;
vain = getlnt();
cout << "Cdlback RPC Recelved : " << vdin << endl;
}
public:
Rpc(char *name) : DimRpcinfo(name, -1) { };
};

main()
{
int rpcCBVaue =0,
Rpc rpcCB("TESTRPC/INT");

while(1)
{
rpcCB.setData(rpcCBVaue);
sleep(5);
}
}

DimRpcl nfo blocking example:
#include"dic.hxx"

main()
{
int rpcVaue=0;
DimRpcInfo rpc("TESTRPC/INT" ,-1);

while(1)

{
rpc.setData(rpcVaue);
rpcValue = rpc.getint();
sleep(5);

http://dim.web.cern.ch/dim/DimRpclnfo.html

int getSize (); //Get the size of the data (for complex types)

07/22/2002

Page 31 of 68

DimService 07/22/2002

Last update: 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimRpclnfo.html Page 32 of 68

DimiInfo 07/22/2002

Class. DimStampedinfo

Library: DIM

Author: C. Gaspar

Version: v1.0 Update : Wed Apr 05 15:52:46 2000

Descrition :

Tobeused by DIM clients - implements DIM service subscription and reception for
time stamped (and quality flaged) services
DimStampedI nfo requests the server to send together with the service data a quality flag and a
timestamp
DimStampedinfo inheritsits behaviour from Diminfo, pleaserefer toit for detailed description.

Pleaserefer to Usage for examples.
Constructors (as for DimInfo):
Constructorsfor Services updated only by the server

public DimStampedInfo (char * name, int nolink) ; Integer Service

public DimStampedInfo (char * name, float nolink) ; Float Service

public DimStampedIinfo (char * name, double nolink) ; Double Service

public DimStamped| nfo (char * name, char * nolink) ; Character String Service
public DimStamped| nfo (char * name, void * nolink, int nolinksize) ; Structure
(mix types) Service

Constructorsfor Services updated (also) on atime basis

* public DimStampedinfo (char * name, int time, int nolink) ; Integer Service
* public DimStampedinfo (char * name, int time, float nolink) ; Float Service
* public DimStampedinfo (char * name, int time, double nolink) ; Double Service
¢ public DimStampedinfo (char * name, int time, char * nolink) ; Character String
Service
* public DimStampedinfo (char * name, int time, void * nolink, int nolinksize)
; Structure (mix types) Service

Congructorsfor Serviceswith a Handler for multiple Services (without time)

¢ public DimStampedinfo (char * name, int nolink, DiminfoHandler * handler)
; Integer Service

* public DimStampedinfo (char * name, float nolink, DiminfoHandler * handler)
; Float Service

* public DimStamped| nfo (char * name, double nolink, DimInfoHandler *
handler) ; Double Service

* public DimStampedInfo (char * name, char * nolink, DiminfoHandler * handler)
; Character String Service

http://dim.web.cern.ch/dim/DimStampedi nfo.html Page 33 of 68

DimiInfo 07/22/2002

* public DimStampedinfo (char * name, void * nolink, int nolinksize,
DiminfoHandler * handler) ; Structure (mix types) Service

Constructorsfor Serviceswith a Handler for multiple Services (with time)

* public DimStampedinfo (char * name, int time, int nolink, DimInfoHandler *
handler) ; Integer Service

* public DimStampedInfo (char * name, int time, float nolink, DiminfoHandler *
handler) ; Floa Service

¢ public DimStampedinfo (char * name, int time, double nolink, DimInfoHandler
* handler) ; Double Service

* public DimStampedinfo (char * name, int time, char * nolink, DimIinfoHandler *
handler) ; Character String Service

* public DimStampedinfo (char * name, int time, void * nolink, int nolinksize,
DiminfoHandler * handler) ; Structure (mix types) Service

Destructors:
* public ~ DimStampedlnfo () ; Dim Service Destructor
Public Functions::
Inherited from Diminfo:

void* getData () ; Get the Service Contents

int getint () ; Get Integer Service Contents

float getFloat () ; Get Float Service Contents

double getDouble () ; Get Double Service Contents

char* getString () ; Get String Service Contents

Int getSize () ; Get the Service Size.

virtua void infoHandler () ; To be overloaded if Handler specified

New Functionality (Theinformation retrieved by the following methods is set by the sever
by using the class DimService):

* int getQuality () ; Get the Qudlity flag received with the sarvice (set by the server)
* intgetTimestamp () ; Get the time stamp (in seconds since midnight, Jan 1st 1970)
* int getTimestampMillisecs (') ; Get the milliseconds

Usage :

DimStampedinfo can be used like DimlInfo:

Example :

class RunNumber: public DimStampedinfo
{

http://dim.web.cern.ch/dim/DimStampedi nfo.html Page 34 of 68

DimiInfo 07/22/2002

public:
/1 subscribe to service with handler
RunNumber(): DimStampedinfo("DELPHI/RUN_NUMBER", -1) {}
/I update handler
void infoHandler()
{
time_t time;
time = getTimestamp();
cout << " Received: " << getint() << " Time Stamped: " << ctimeg(&time) <<
"Quadlity: "<< getQudlity() << endl;

Last update: 02/11/99 15:53:02 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimStampedi nfo.html Page 35 of 68

Class 07/22/2002

Class. DimUpdatedl nfo

Library: DIM

Author: C. Gaspar

Version: v1.0 Update : Wed Apr 05 15:52:46 2000

Descrition :

Tobeused by DIM clients - implements DIM service subscription and reception

DimUpdatedI nfo constructors subscribeto DIM services.

DimUpdatedinfo Services can be requested to be updated when the contents change and/or at
regular timeintervals.

The difference between DimUpdatedinfo and Diminfo isthat services are not received at
Startup, i.e. thefirst timea client subscribesto a service.

The services are received when the server updatesthem or after atimeout limit if the
parameter "time" is specified.

DimUpdatedl nfo inheritsits behaviour from Diminfo, please refer to it for detailed description.
Pleaserefer to Usage for examples.

Constructors (as for DimInfo):
Constructorsfor Services updated only by the server

¢ public DimUpdatedinfo (char * name, int nolink) ; Integer Service

* public DimUpdatedlnfo (char * name, float nolink) ; Float Service

* public DimUpdatedinfo (char * name, double nolink) ; Double Service

* public DimUpdatedinfo (char * name, char * nolink) ; Character String Service

* public DimUpdatedinfo (char * name, void * nolink, int nolinksize) ; Structure (mix

types) Service

Constructorsfor Services updated (also) on atime basis

* public DimUpdatedinfo (char * name, int time, int nolink) ; Integer Service
* public DimUpdatedinfo (char * name, int time, float nolink) ; Float Service
* public DimUpdatedinfo (char * name, int time, double nolink) ; Double Service
¢ public DimUpdatedinfo (char * name, int time, char * nolink) ; Character String
Service
* public DimUpdatedinfo (char * name, int time, void * nolink, int nolinksize)
; Structure (mix types) Service

Congructorsfor Serviceswith a Handler for multiple Services (without time)

http://dim.web.cern.ch/dim/DimUpdatedi nfo.html Page 36 of 68

Class 07/22/2002

* public DimUpdatedlnfo (char * name, int nolink, DiminfoHandler * handler)
; Integer Service

* public DimUpdatedinfo (char * name, float nolink, DiminfoHandler * handler)
; Float Service

* public DimUpdatedinfo (char * name, double nolink, DiminfoHandler * handler)
; Double Service

* public DimUpdatedinfo (char * name, char * nolink, DiminfoHandler * handler)
; Character String Service

* public DimUpdatedinfo (char * name, void * nolink, int nolinksize,
DiminfoHandler * handler) ; Structure (mix types) Service

Constructorsfor Serviceswith a Handler for multiple Services (with time)

* public DimUpdatedinfo (char * name, int time, int nolink, DimlinfoHandler *
handler) ; Integer Service

* public DimUpdatedinfo (char * name, int time, float nolink, DiminfoHandler *
handler) ; Floa Service

¢ public DimUpdatedinfo (char * name, int time, double nolink, DiminfoHandler *
handler) ; Double Service

* public DimUpdatedinfo (char * name, int time, char * nolink, DiminfoHandler *
handler) ; Character String Service

* public DimUpdatedinfo (char * name, int time, void * nolink, int nolinksize,
DiminfoHandler * handler) ; Structure (mix types) Service

Destructors:
* public ~ DimUpdatedinfo () ; Dim Service Destructor
Public Functions::
Inherited from Diminfo:

void* getData () ; Get the Service Contents

int getint () ; Get Integer Service Contents

float getFloat () ; Get Float Service Contents

double getDouble () ; Get Double Service Contents

char* getString () ; Get String Service Contents

Int getSize () ; Get the Service Size.

virtua void infoHandler () ; To be overloaded if Handler specified

Usage :

DimUpdatedinfo can be used exactly like Dimlinfo:

http://dim.web.cern.ch/dim/DimUpdatedi nfo.html Page 37 of 68

DimClient 07/22/2002

Class. DimBrowser

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

Tobeused by DIM processes - implements DIM environment browsing.
Allows Getting Information on Services, Serversand Clients available.
Pleaserefer to Usage for examples

Public Functions:

char *getServices (char * wildcardServiceName); // Check if a Service or Services
(wildcards dlowed) are available and if so what istheir format. Returns an empty string if none
avallable otherwise a gtring: <service name>|<sarvice format>[|CMD][|RPC]\n'<sarvice... (where
CMD means the service is a command, RPC means it can be accessed by DimRpcinfo). The

sarvice format isthe one given to DimSearvice, DimCommand or DimRpc

char *getServers(); // Getthelig of dl servers available in the system. Format:
<sarver_name>@<node_name>|<server...

char *getServer Services (char * serverName); // Get thelist of al services provided by a
server. Format: <service name>|<sarvice format>[|CMD][|RPC]\n'<sarvice... (where CMD
means the service is a command, RPC means it can be accessed by DimRpclnfo). The

sarvice format isthe one given to DimSearvice, DimCommeand or DimRpc

char *getServer Clients (char * serverName); // Get thelist of clients of a server. Format:
<process>@<node_name>|<process...

Methods for Decoding the information of the above calls

int getNextService (char * serviceName, char *format); // can be cdled after a
getServicey() cal. It will return the type of the Service (DImSERVICE, DimCOMMAND or
DimRPC) or 0 if no more sarvices. If successfull it will return the service name and itsformat. The
format is the one given to DimService, DimCommand or DimRpc

int getNextServer (char *server, char *node); // can be caled after agetServers() call.
It will return 1 while there are serversin the list, O otherwise. If successfull it will return the server
name and the node where it runs.

int getNextServer Service (char *serviceName, char *format); // can be caled after a
getServerServices() cal. It will return the type of the Service (DImSERVICE, DimCOMMAND or
DimRPC) or 0 if no more sarvices. If successtull it will return the service name and its format. The
format is the one given to DimService, DimCommand or DimRpc

int getNextServer Client (char *clientName, char *node); // can be cdled after a
getSarverClienty) cal. 1t will return 1 while there are clientsin the ligt, 0 otherwise. If successfull it
will return the client name and the node where it runs.

Usage :

http://dim.web.cern.ch/dim/DimBrowser.html Page 38 of 68

DimClient
#include <dic.hxx>

main()
{

DimBrowser dbr;
char *server; *node, * sarvice, *format;

int type;

dor.getServers();
while(dbr.getNextServer(server, node))

{

cout << sarver <<" @ " << node << end!;

dbr.getServerServices(server);
while(type = dbr.getNextServerService(service, format))

}
}

Or :
#Hinclude <dic.hxx>

main()

{
DimBrowser dbr;
char *service, *format;
int type;

dbr.getServices("* DEL PHI/MUON*");
while(type = dbr.getNextService(service, format))

{

cout << sarvice<< " - " << format << end;

}
}

07/22/2002

Lagt update: 02/19/99 12:49:03 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimBrowser.html

Page 39 of 68

DimTimer 07/22/2002

Class. DimTimer

Library: DIM

Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :
Utility Class - Implements Asynchronous TimeOut Handling
Constructors:

DimTimer (int time) ; Start the Timer - parameter time is number of seconds
DimTimer () ;

Public Functions:

* void gtart (int time) ; Start the Timer - parameter time is number of seconds
* void stop () ; Stop thetimer
* virtud void timerHandler () = 0;

Usage :
Example:

dass Tim : public DimTimer
{
public:

Tim(int time)

{

gart(time);
b
void timerHandler()

{

cout << "Timer Expired" << endl;

}
H

Or:

dass Tim : public DimTimer

{

public:
Tim(int time) : DimTimer(time) {};
void timerHandler()

{

cout << "Timer Expired" << endl;

http://dim.web.cern.ch/dim/DimTimer.html Page 40 of 68

DimTimer 07/22/2002

}
H

Last update: 02/19/99 12:49:03 by MkHelp 1.1.0

http://dim.web.cern.ch/dim/DimTimer.html Page 41 of 68

dimC

07/22/2002

DIM
Distributed Information M anagement
System

C (and Fortran) Interface

This chapter describes the routines provided by the server and client libraries as well as some examples on
how they can be used.

The Server library implements the DIM server functionality. In order to become a DIM server a process can
use the following routines:

DIS ADD_SERVICE - Declare each Serviceit can provide.

DIS ADD_CMND - Declare each Command Services (if any) it iswilling to execute.

DIS START_SERVING - Send the list of provided Services and Commands to the Name
Server and dart serving client requests. The library takes care of handling al client requests and
updating the Service data according to the mechanism specified by the client.

DIS UPDATE_SERVICE - A server can force an update of the Service when it knows the
information contained in the service has changed.

The Client library implements the DIM client functiondity. In order to become aDIM client a process can
use the following routines:

DIC_INFO_SERVICE - Reguest a sarvice providing the update type (at regular time intervas or
when the information changes) and the update mechanism (either a callback routine or a buffer
update). The library will take care of contacting the Name Server, find out which server providesthe
sarvice, connect to the server, request the service and update the service according to the specified
mechanism whenever the service data arrives.

DIC_CMND_SERVICE - Request the execution of acommand. The library will take care of
contacting the Name Server, find out which server provides the command, connect to the server and
tell it to execute the command.

DIC_CMND_CALLBACK - Same as above but a callback will be executed to report success or
falure

DIC_RELEASE_SERVICE - Rdease asarviceif it becames unnecessary.

Server Library (DIS)
Server examples

Client Library (DIC)

Client examples

Timer Utility Library (DTQ)

http://dim.web.cern.ch/dim/dimC.html Page 42 of 68

dis 07/22/2002

DIM
Distributed Information M anagement
System

4.1 Server Library (DIS)

Detailed description of the routines contained in the Server library :

dis add_service

Add an information service to the list of provided services.

Format

unsigned int dis_add_service (name, description, address, size,
user_routine, tag)

Arguments

char *name;
Sarvice name, this name should be usad by the client when requesting the service.
char *description;

Service description string, the contents of the service can be described in the form "T:N; T:N; T"
where T isthe datatype : C(char), L(ong), S(hort), D(ouble), F(loat) or X(tralong) and N isthe
number of items of that type. A datatype done a the end of string means al following items are of
type T. The description string is not necessary and can be replaced by O when running in anon
mixed environmen.

int *address;

Service address, if the data provided by this service is stored in memory (globa section, array, etc)
and isto be sent asit isto the client, it's address should be given here.

int Size

Service Sze, the Sze in bytes of the data to be passed to the client if the previous parameter has
been specified.

void *user_routine;

http://dim.web.cern.ch/dim/DIM_5.HTML Page 43 of 68

dis 07/22/2002

The address of aroutine to be executed when it's time to send the data to a client. This routine will
provide the deta, the parameters of this routine will be specified later in this document.

int tag;

A parameter to be sent to the user_routine in order to identify the service.

Returns
unsigned int service id;

The service identifier, to be used when (if) updating or removing the service (by caling
dis update service or dis remove_service).

Description

This routine has to be caled once for every service provided by the server. There are two ways of
providing the service : specifying the address and Sze of the data to be sent to the client or
specifying the address of aroutine that will provide the data.

dis add _cmnd

Add acommand service to the list of provided services.

Format

unsigned int dis_ add_cmnd (name, description, cmnd_user _routine,
tag)

Arguments
char *name;
Service name, same name used by client when requesting the execution of acommand.
char *description;
Service description string, the contents of the service can be described in the form "T:N; T:N; T"
where T isthe datatype : C(char), L(ong), S(hort), D(ouble), F(loat) or X (tralong) and N isthe
number of items of that type. A datatype done at the end of string meansdl following items are of
type T. The description string is not necessary and can be replaced by O when running in anon

mixed environmernt.

void *cmnd_user_routineg;

http://dim.web.cern.ch/dim/DIM_5.HTML Page 44 of 68

dis 07/22/2002

The address of the routine to be executed when a command request is received from aclient, the
parameters of this routine will be specified later in this document. This parameter isoptiond, if itis
specified as zero, the request will be queued and can be recovered later by caling the routine

dis get next_cmnd.

int tag;

A parameter to be passed to the cmind_user_routine or to dis_get_next_cmnd in order to identify
the command service.

Returns

unsigned int service id;

The service identifier, to be used when (if) removing the service (by cdling dis remove _service).
Description

This routine has to be called once for every command service provided by the server.

dis start _serving

Start handling client requests.

For mat
int dis_start_serving (task_name)
Arguments

char *task_name;

Task name, a tring identifying the server, used by the Name server to recognize the server aswell
as for monitoring and debugging purposes.

Returns

Int return_code

Returns 1 if the list of services and commands were succesfully sent to the Name Server, 0
otherwise.

Description

Thisroutine will register within the name_server dl the services declared with dis add service and
dis add cmnd.

http://dim.web.cern.ch/dim/DIM_5.HTML Page 45 of 68

dis 07/22/2002

It will set up the server so that it will handle client requedts.

It will dso set up al the mechanisms so that when a service has to be sent to adlient the user_routine
that providesthat service will be cdled or the datawill be taken from the address and size provided
indis add service and sent to the client.

dis update service

Report the change of service contents to interested clients.

For mat
int dis_update_service (unsigned int service id)
Arguments
unsigned int service id;
The service id returned by dis add service.
Returns
int n_clients;
Returns the number of updated clients.
Description

This routine should be caled by the server program when there is a change for a given service (when
possible).

This routine will check whether there are clients interested in this service and if they have requested
to receive the data uppon change (monitored service) the datawill be sent, either by cdling the data
provider routine or by sending the specified data buffer.

dis remove service

Remove a Service from thelist of provided services.

Format

int dis remove service (unsigned int service id)

http://dim.web.cern.ch/dim/DIM_5.HTML Page 46 of 68

dis 07/22/2002
Arguments
unsigned int service id
The service id returned by dis add service.
Returns
int return_code
Returns 1 if the Service was succefully removed.
Description

This routine can be caled by the server program when a service stops beeing provided.

Thisroutine will inform the Name server and dl the clients using this service that it is no longer
provided. The service can from then on be provided by another server.

dis stop serving

Stop Serving DIM Services.

Format
void dis_stop_serving ()
Description

This routine can be caled by the server program in order to stop beeing aDIM Server.

dis get_next_ cmnd

Get acommand from the list of waiting command requests.

For mat
int dis_get_next_cmnd (tag, buffer, size)

Arguments

http://dim.web.cern.ch/dim/DIM_5.HTML Page 47 of 68

dis 07/22/2002
int *tag;
This parameter returns the tag given to dis add_cmnd, it allows the identification of the command.
int *buffer;
A buffer address where the command request is to be copied to.
int *size;

On entry this parameter contains the Size of the buffer, on exit it contains the real Size of the
command request.

Returns

int return_code

Returns O if no command request is waiting for execution, -1 if the command request doesnt fit on
the specified buffer (truncated) and 1 if the command as been copied successfully into the user
buffer.

Description

This routine has to be caled by the user if no cmind_user_routine address has been specified in
dis add _cmnd. It allows the user to get and execute the commands requested by a client.

user _routine

Routine written by the user in order to provide a service.

For mat

void user_routine (tag, address, size)
Arguments

int *tag;

The parameter that identifies the service, the tag given to dis_add service. Passed by reference for
FORTRAN compatibility.

int **address;
Should return the address of the data to be sent to the client.
Int *size;

http://dim.web.cern.ch/dim/DIM_5.HTML Page 48 of 68

dis 07/22/2002

Should return the Sze in bytes of the data to be sent to the client

Description

This routine should be declared in dis_add_serviceif not using the address, Size parameters, it will
be called whenever the service has to be sent to the client.

This routine should provide the necessary gathering or computing of dataand store it in a buffer in
order to be sent asa service to a client.

cmnd_user_routine

Routine written by the user in order to execute a command when a command request is received
from adlient.

For mat

void cmnd_user_routine (tag, address, size)
Arguments

Int *tag;

The parameter that identifies the command, the tag given to dis add _cmnd. Passed by reference for
FORTRAN compatibility.

int *address;

The address of the buffer containing the command.

int *size;

The size in bytes of the command data. Passed by reference for FORTRAN compatibility.
Description

This routine should be declared in dis_add _cmnd for immediate execution on reception of a
command request.

http://dim.web.cern.ch/dim/DIM_5.HTML Page 49 of 68

dic 07/22/2002

DIM
Distributed Information M anagement
System

4.3 Client Library (DIC)

Detailed description of the routines contained in the Client library :

dic_info_service

Request an information service from a server

Format

unsigned int dic_info_service (name, type, timeout, addr ess, size,
user_routine, tag, fill_address, fill_size)

Arguments
char *name;
Service name, same name used by server when declaring the service.
int type;
Type of service, constants defined are: ONCE_ONLY, TIMED or MONITORED.
int timeout;
For aTIMED service "timeout” indicates the time interval the server should use to send new deta,
for ONCE_ONLY or MONITORED services it indicates the time after which the serviceis
consdered to have failed.
int *address;

Address of the buffer where to store the data when the service returns from the server. This
parameter can be set to 0 and only the callback routine will be executed.

Int size;
The sze in bytes of the previous buffer (if specified).
void *user_routineg;

http://dim.web.cern.ch/dim/DIM_7.HTML Page 50 of 68

dic 07/22/2002

The address of aroutine to be executed when new data is returned from the server, the parameters
of thisroutine will be pecified later in this document. Can be set to O if no calback routineis

necessary.

int tag;

A parameter to be sent to the user_routine in order to identify the service that has completed.
int *fill_address;

Address of abuffer containing data to be stored in the service buffer or passed to the calback
routine in case the service doesn't succeed.

int fill_size:
The sze in bytes of the previous buffer.

Returns
unsigned int service id;
The service identifier, to be used when (if) releasing the service.

Description

Thisroutine first contacts the name server in order to get the address of the server where the
requested service is available, and then sends the request directly to the server. When the service
arives from the server the client buffer isfilled with the data and/or the user_routine is executed.

After atimeout (timeout parameter for ONCE_ONLY and MONITORED services and 2* timeout
parameter for TIMED sarvices) the sarvice is considered faled, the information in fill_addressis
copied into the client buffer and/or the user_routineis called.

If the server is not responding the client recontacts the name server and the name server will wake
up the client as soon as the server is up.

dic_cmnd_service

Reguest the execution of acommand by a server

For mat
int dic_cmnd_service (name, address, size)

Arguments

http://dim.web.cern.ch/dim/DIM_7.HTML Page 51 of 68

dic

07/22/2002
char *name;
Service name, same name used by server when declaring the command service.
int *address;
Address of the buffer containing the command data.
int size;

The size in bytes of the previous buffer.

Returns

Int return_code;

Returnsl if the command was successfully requested.

Description

This routine requests the execution of acommand by a server, address and Size contain the
command parameters. Thisimplies contacting the name server (if the command in not know areedy)
and then contacting directly the server. This routine does not report back the completion of the
command since these operations are only scheduled and may complete asynchronoudly.

If the server is not responding the command is discarded (in order to avoid having it sent later when
it might not be desired anymore).

Thisroutine dlows clients (user interfaces for ex.) to send commands to be executed by the servers.

dic_cmnd_callback

Reguest the execution of acommand by a server and registers a completion callback

Format

int dic_cmnd_service (name, address, size, cmd_callback, tag)

Arguments

char *name;

Service name, same name used by server when declaring the command service.

Int *address;

http://dim.web.cern.ch/dim/DIM_7.HTML Page 52 of 68

dic 07/22/2002
Address of the buffer containing the command data.
int size;
The sizein bytes of the previous buffer.
void *cmd_callback;

The address of aroutine to be executed when the command completes, in order to report the
success or fallure of the operation. The parameters of this routine will be specified later in this
document.

int tag;

A parameter to be sent to the cmd_callback in order to identify the command that has completed.
Returns

Int return_code;

Returnsl if the command was successfully requested.

Description

This routine requests the execution of a command by a server, address and size contain the
command parameters. Thisimplies contacting the name server (if the command in not know aready)
and then contacting directly the server. This routine does not report back the completion of the
command since these operations are only scheduled and may complete asynchronoudy. The
cmd_calback routine will be executed on completion.

If the server is not responding the command is discarded (in order to avoid having it sent later when
it might not be desired anymore).

Thisroutine dlows clients (user interfaces for ex.) to send commands to be executed by the servers

dic release service

Cdled by aclient when a service is not needed anymore

Format
void dic_release service (service id)

Arguments

http://dim.web.cern.ch/dim/DIM_7.HTML Page 53 of 68

dic 07/22/2002
unsigned service id;

The sarvice id returned by dic_info service.

Description

This routine tells the server not to update this service anymore and destroys dl the referencestoiitin
the client.

user_routine

Routine written by the user, called when new data arrives from a server. The user routineis cdled
with three parameters, please read carefully the parameter description.

Format

void user_routine (tag, buffer, size)
Arguments

int *tag;

A parameter in order to identify the service, thetag given to dic_info_service. Passed by reference
for FORTRAN competibility

int *buffer;

This parameter contains the address of the data received from the server. If the user has supplied
"address’ when cdling dic_info_service buffer pointsto "address’, otherwise it pointsto a
temporarily alocated buffer where the data received has been stored (in this case this buffer

addressisvalid only during the execution of thisroutine, if the data contained in this buffer hasto be
used later it's the responsbility of the user to copy it to another buffer).

int *size;
The szein bytes of the data actually sent by the server. Passed by reference
Description

Thisroutine is called on reception of data from aserver, it can be used for ex. by user_interfacesin
order to update the screen whith the new set of data.

http://dim.web.cern.ch/dim/DIM_7.HTML Page 54 of 68

dic 07/22/2002

cmd_callback

Routine written by the user, caled on command completion. Thisroutine is caled with two
parameters, please read carefully the parameter description.

For mat

void user _routine (tag, ret_code)
Arguments

int *tag;

A parameter in order to identify the command, the tag given to dic_cmd_callback. Passed by
reference for FORTRAN compatibility

int *ret_code;

The return code: 1 if the command was successfully sert, i.e., the server was found and the
command successfully written out; O otherwise. Passed by reference

Description

Thisroutineis cadled on command completion to check or wait for successful ddivery.

http://dim.web.cern.ch/dim/DIM_7.HTML Page 55 of 68

dis examples

DIM
Distributed Information M anagement
System

07/22/2002

4.2 Server examples

Examples

#1

The following example implements a C server. This server provides two services which contain the
same data, but the way of providing the data differs. The server can dso execute one command and
on its reception it updates one of the services.

#include <dish>

int buffer[] ={ 0,1,2,34,5,6,7,89};

int service id;

void build_service(tag, address, size)

int *tag;

int ** address;

int*gze
{

*address = buffer;
*gze = sizeof (buffer);

}

void execute_cmnd(tag, cmnd_buffer, Size)

int *tag;

char *cmnd_buffer;

int*gze
{

if(*tag == 1)

{

printf("SERV_CMND: Command %s received\n”,cmnd_buffer);
dis update service(service id);

}
}

main()

{

dis add_service("SERV_BY_BUFFER", "L", buffer, 40, 0, 0);

http://dim.web.cern.ch/dim/DIM_6.HTML

Page 56 of 68

dis examples 07/22/2002

service id =dis add service("SERV_BY_ROUTINE", "L", 0, 0,
build_service, 0);

dis add cmnd("SERV_CMND", 0, execute_cmnd, 1);

dis start serving("DIS TEST");

while()

{
sleep(10);

}

}

The following example implements a FORTRAN sarver. This server provides one information
sarvice and one command service. On command reception it updates the information service.

program test_server
implicit none

common/test_ser/service id
integer*4 service id

integer*4 dis add_cmnd, dis add service
integer*4 dis_sart_serving

external do_cmnd
character* 80 str

str = 'Server Answer'
service id =dis add service(TEST/INFO','C',%ref(str),80,%val (0), 0)
cdl dis add cmnd('TEST/CMND','C',do_cmnd, 0)

cdl dis gart serving('DIS TEST)
call sysshiber()
end

subroutine do_cmnd(tag, buf, size)
implicit none

integer*4 tag, Sze

integer* 4 buf

character* 80 str

integer*4 dis_convert_str
common/test_ser/service id
integer*4 service id

C Theroutine dis_convert_str converts a C string into a Fortran string
cal dis_convert_str(buf, tr)
write(6,'(A,A)") ' Server : Received ', str
cal dis_update service(service id)

end

http://dim.web.cern.ch/dim/DIM_6.HTML Page 57 of 68

dic_examples 07/22/2002

DIM
Distributed Information M anagement
System

4.4 Client examples

Examples
#1

The following example implements a C client. The client requests two services, one TIMED (every
ten seconds) and one MONITORED. It aso tells the server to execute a command.

#include <dic.n>

int buffer[10];
int no_link =-1;
int verdon;

buff recelved(tag, bufferp, size)
int *tag, *sze;
char *bufferp;

{
inti;

if(bufferp[0] == -1)
printf("Service SERV_BY_BUFFER not availabléin”);
ese
{
printf("received service SERV_BY BUFFER\N\t");
for(i=0;i<10;i++)
printf("%d " ,bufferp[i]);
printf("\n");
}
printf("\n");
}
serv_received(tag, address, Size)
int *tag, *address, *size

{
inti;

if(*address == -1)
printf("Service SERV_BY _ROUTINE not available\n™);

http://dim.web.cern.ch/dim/DIM_8.HTML Page 58 of 68

dic_examples 07/22/2002

dse
{
printf("recelved service SERV_BY_ _ROUTINE\n\t");
for(i=0;i<10;i++)
printf("%d " ,buffer(i]);
printf("\n");
}
printf("\n");
}

main()

{

dic_info_service("SERV_BY_BUFFER", TIMED, 10,
buffer, 40, buff _received, 0, &no _link,4);

dic_info_service("SERV_BY_ROUTINE", MONITORED, O,
0, 0, serv_received, 0, &no_link,4);

while(1)

{
dic_ cmnd_service("SERV_CMND", "UPDATE", 7);
seep(5);

}

}

The following example implements a FORTRAN client. This client requestsa MONITORED
sarvice and tdl the server to execute a command.

program test_client
implicit none

common/test_for/buff
character* 80 buff
include 'del phi$online:l communications.dim]dic.inc

integer*4 dic_cmnd_service
character* 80 str

externa recv_rout

externd dic_info_service

buff = 'empty’

str = 'Command'

cal dic_info_service(TEST/INFO',MONITORED,0,%ref (buff),80,recv_rout,

: 0,%val(0),0)

do while(. TRUE.)
cal dic_cmnd_service(TEST/CMND' %ref(str),17)
call lib$wait(10.)

enddo

end

http://dim.web.cern.ch/dim/DIM_8.HTML Page 59 of 68

dic_examples 07/22/2002
subroutine recv_rout(tag)

implicit none

integer*4 tag

common/test_for/buff

character* 80 buff

write(6,'(A,A)") ' Client : Received ', buff

end

http://dim.web.cern.ch/dim/DIM_8.HTML Page 60 of 68

dtq 07/22/2002

DIM
Distributed Information M anagement
System

45 Timer Library (DTQ)

Detailed description of the routines contained in the Timer Utility Library :

dtq_start_timer

Start a TimeOut request

For mat
void dtg_start_timer (time, user_routine, tag)
Arguments
int time;
The time in seconds after which the user_routine should be called.
void *user_routine;
The address of aroutine to be executed when the timer expires.
int tag;

A parameter to be sent to the user_routine in order to identify the Timeout request. Tag is aso used
as Request Identifier in order to stop the timer.

Description

This routine sarts atimer. When the timer expires the user_routine will be caled.

dtq_stop timer

Stop (cancd) a TimeOut request

http://dim.web.cern.ch/dim/DIM_9.HTML Page 61 of 68

dtq
For mat

void dtg_stop_timer (tag)
Arguments

int tag;

The parameter givento dtq_dtart_timer.

Description

This routine sops the timer. The user_routine will no longer be called.

07/22/2002

dtq_sleep

Seep for anumber of seconds

Format
void dtg_sleep(time)
Arguments
int time;
The time in seconds the process should be suspended for.

Description

This routine suspends the process for the given number of seconds. In Unix the deegp function exits
when the process receives asigna, snce DIM uses signals, processes using the UNIX call directly
will exit severd times and it would be difficult to compute the actud time dept. dtq_deep can be

used ingtead it only exits when the deep time elgpses.

user_routine

Routine written by the user, cdled when the timer started by dtq_start_timer expires.

Format

void user_routine (tag)

http://dim.web.cern.ch/dim/DIM_9.HTML

Page 62 of 68

dtq 07/22/2002
Arguments

int tag;

The parameter that identifies the request. The tag given to dtq_dtart_timer.
Description

Thisroutine is called when atimer darted by dtq_start_timer expires.

http://dim.web.cern.ch/dim/DIM_9.HTML Page 63 of 68

Instructions for downloading, installing and running DIM on 07/22/2002

Instructions for downloading, installing and running DIM on
Windows NT/2000

Latest version Release Notes

1. Download

* getthefiledim.zip
* unzip (extract) dim.zip onto a DIM folder

2. Ingtallation

¢ Insert../DIM/binin the "path" (Control Panel, System, Environment tab)

* set the environment variable DIM_DNS NODE to <node name>, <node
name> is the complete name of the node where the DIM Name Server
(Dns) will run, ex. hpplus003.cern.ch. (again Control Panel, System,
Environment tab).

3. Running

* If you want to run Dnsin the PC: In the Command Prompt type "dns".

¢ The DIM display tool for windows is DIM/bin/DID

* From then on you can start DIM servers and clients, some example ones are
available, you can start them by:

* test server <server name>
* test client <client name> <server name>
* In order to make your own servers and/or clients you have to link them with
dim.lib in DIM/bin (also dim.dll is there). The DIM/src/examples directory
contains the source code of the examples and devstudio settings to compile
and link them (dim.dsw) are available in DIM/Visua.

http://dim.web.cern.ch/dim/dim_wnt.html Page 64 of 68

Instructions for downloading, installing and running DIM on 07/22/2002

Instructions for downloading, installing and running DIM on

1. Download

UNIX

L atest ver sion Release Notes

get thefile dim.zip
extract it onto a"dim" folder using: unzip -a

2. Installation

3. Running

cd dim
(please use tcsh for the following to work)

setenv OS <unix flavour>, <unix flavour> can be: HP-UX, AlX,
Solaris, SUnOS, OSF1, Linux, LynxOS

source .setup
gmake [optiong] al
* possible options:

* CPP=yesor no (default = yes) : Create aso the DIM
C++ class library

* THREADS=yes or no (default = yes) : Use the DIM
multithreaded version

* CC=cc, gcc, etc. (default = cc native compiler) : Define
which C compiler to use

* CXX=CC, g++, etc. (default = CC native compiler) :
Define which C++ compiler to use

* FLAGS=...: Extra user flags to pass to the compiler

* EXTRALIBS=... : Extrauser libraries to pass to the
linker

setenv DIM_DNS NODE <node name>, <node name> is the
complete name of the node where the DIM Name Server (Dns) will
run ex. hpplus003.cern.ch

Dns & ! Starts the Name Server

Did & !Starts the DIM Display

From then on you can start DIM servers and clients (some example
servers and clients source code is available in dim/src/examples) you
can start them by:

* Test server <server name>

http://dim.web.cern.ch/dim/dim_unix.html Page 65 of 68

Instructions for downloading, installing and running DIM on 07/22/2002

* Test client <client name> <server name>
* In order to make your own servers and/or clients you have to link
them with ...dim/<OS type>/libdim.a and with -Ipthread (you can use
makefile_examples in the top directory as an example).

http://dim.web.cern.ch/dim/dim_unix.html Page 66 of 68

07/22/2002

D M version 10.4 Rel ease Notes

Notes 1 and 2 for Unix Users only
NOTE 1: In order to "rmake" DI Mtwo environnent variables shoul d be set:
s = one of {HP-UX, Al X CSFl, Solaris, SunCS, LynxQS, Linux}
DMJIR = the path name of DOMs top level directory
The user should then go to DDMs top level directory and do:
> source .setup
> gmake all
Q, if there is no support for C++ on the machine:
> gmake CPP=no all

NOTE 2: The Name Server (Dns), DID, servers and clients (if running in
background) should be started whith the output redirected to a
logfile ex:

Dns </dev/null >& dns.log &

NOTE 3: The Version Nunber service provided by servers is now set to 1004
(version 10.04).

25/ 4/ 2002
Changes for version 10.0:

- Al source files are now comon to Wndows and Unix flavours
(Linux included). Directories src/win and src/unix no | onger
necessary.

- Fixed hopefully all conpiler warnings (especially on Solaris 8).

- In order to avoid potential deadlocks all tcpip wites (dna wite)
are done by a separate thread (the tiner thread, via a specia
"imredi ate" queue). Except service updates and sendi ng conmmands
(dna_wite _nowait) since they are not bl ocking and to preserve
backwar d behavi our conpatibility.

- Optimzed servers, clients and the name servers for |arge nunber
of services

- Modified error messages to be nore explicit

01/ 5/ 2002
Changes/ Bug Fi xes for Version 10. 1:
- Fixed the D nRpc class, it would hang soneti nes.
- Fixed a problemin the "imediate" tiner handler (too slow)
- Added "const" to service names in Dimnfo and D nService met hods
- changed print_date time to dimprint_date tine and nade it
avail able to users
- Qpen_dns didn't always return the correct value (D D woul dn't
reconnect to on Dns restart)
Did (on Linux) now shows services in al phabetical order

06/ 5/ 2002
Changes/ Bug Fi xes for Version 10. 2:
- Fixed dtg.c and tcpip.c for Linux, dimwait() woul d not always
return when required
- The distribution kit now al so contains the shareabl e version of
the DDMIlibrary for Linux - |libdimso
The makefiles use the shareabl e version for creating Dns, D d
and the exanples (.setup adds dimlinux to LD LI BRARY_PATH)

27/ 5/ 2002

http://dim.web.cern.ch/dim/dim_v10r4.readme.txt Page 67 of 68

07/22/2002

Changes/ Bug Fi xes for Version 10. 3:
- Changed diminclude files not to include "w ndows. h" under
wi ndows. This was causing a conflict with Gaudi.
(Had to change "D M senaphores" from macros to subroutines)

18/ 7/ 2002
Changes/ Bug Fi xes for Version 10. 4:
- Two consecutive client requests for the same service woul d not
i mpl enent the "stanped" flag properly (dic.c)
- The Di nBrowser class would not retreive service nanes contai ni ng
the character "@. Fi xed.
- Re-fixed a bug that woul d make servers crash when clients exited
whil e servers were updating a service (dis.c).
- dtg_start _tiner() did not always wait the requested anount of tine.
- Dd (Linux version) now also prints timestanp and quality flag
when Vi ewi ng service contents.

Pl ease check the Manual for nore infornmation at:
http://ww. cern.ch/dim

http://dim.web.cern.ch/dim/dim_v10r4.readme.txt Page 68 of 68

