
DIM

http://dim.web.cern.ch/dim/ Page 1 of 68

07/22/2002

C.Gaspar, ECP Division, CERN

Abstract
DIM is a communication system for distributed / mixed environments, it provides a
network transparent inter-process communication layer. This manual provides an
overview of DIM's functionality and guidance on its usage.

 Revision/Update Information: Version 10.0, April
2002

(C) Copyright CERN except where explicitly stated otherwise. Permission to use and/or
redistribute this work is granted under the terms of the GNU General Public License, The
software and documentation made available under the terms of this license are provided with no
warranty.

Contents (summary)

Introduction
Availability and Tools
User Manual (html) / User Manual (ps)
Download DIM for: Windows NT or UNIX

Other related documents

DIM - A Distributed Information Management System for the Delphi experiment at
CERN (ps) Presented at: IEEE Eight Conference REAL TIME '93 on Computer
Applications in Nuclear, Particle and Plasma Physics (Vancouver, June 8-11 1993)
A Highly Distributed Control System for a Large Scale Experiment (ps) Presented at: 13th
IFAC workshop on Distributed Computer Control Systems - DCCS'95 (Toulouse, Sep
27-29 1995)

DIM

http://dim.web.cern.ch/dim/ Page 2 of 68

07/22/2002

The Delphi experiment Control System (ps) Presented at: 1st IEEE Conference on the
Engineering of Complex Computer Control Systems (Ft. Lauderdale, Florida, Nov 6-10
1995)
Controlling a Large Physics Experiment; a Communication Issue (ps) Published in: IFAC
Journal - Control Engineering Practice (Vol.4 Num. 2, Feb 1996)
DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and
Inter-process Communication (ps) Presented at: International Conference on Computing in
High Energy and Nuclear Physics (Padova, Italy, 1-11 February 2000)

dim_intro

http://dim.web.cern.ch/dim/dim_intro.html Page 3 of 68

07/22/2002

DIM
Distributed Information Management

System

Introduction
DIM, like most communication systems, is based on the client/server paradigm.

The basic concept in the DIM approach is the concept of "service". Servers provide services to clients. A
service is normally a set of data (of any type or size) and it is recognized by a name - "named services". The
name space for services is free.

Services are normally requested by the client only once (at startup) and they are subsequently automaticaly
updated by the server either at regular time intervals or whenever the conditions change (according to the
type of service requested by the client).

The client updating mechanism can be of two types, either by executing a callback routine or by updating a
client buffer with the new set of data, or both. In fact this last type works as if the clients maintain a copy of
the server's data in cache, the cache coherence being assured by the server.

In order to allow for transparency (i.e, a client does not need to know where a server is running) as well as
to allow for easy recovery from crashes and migration of servers, a name server was introduced.

Servers "publish" their services by registering them with the name server (normally once, at startup).

Clients "subscribe" to services by asking the name server which server provides the service and then
contacting the server directly, providing the type of service and the type of update as parameters.

The name server keeps an up-to-date directory of all the servers and services available in the system. The
Figure shows how DIM components (Servers, Clients and the Name Server) interact.

dim_intro

http://dim.web.cern.ch/dim/dim_intro.html Page 4 of 68

07/22/2002

Whenever one of the processes (a server or even the name server) in the system crashes or dies all
processes connected to it will be notified and will reconnect as soon as it comes back to life. This feature not
only allows for an easy recovery, it also allows for the easy migration of a server from one machine to
another (by stopping it in the first machine and starting it in the second one), and so for the possibility of
balancing the machine load of the different workstations.

dim_tools

http://dim.web.cern.ch/dim/dim_tools.html Page 5 of 68

07/22/2002

DIM
Distributed Information Management

System

Availability and Tools
The DIM system is currently available for mixed platform environments comprising the operating systems :
VMS, Unix, Linux, Windows NT and the real time OSs: OS9, LynxOs and VxWorks. It uses as network
support TCP/IP.

The differences in data representation (e.g.: byte ordering, floating point format, data alignment and data
type sizes) over different machines are automaticaly (transparently) negotiated between the server, the client
and the name server.

All DIM functionality is available as server and client libraries providing C++, C and Fortran callable
interfaces.

The behaviour of complex distributed applications can be very difficult to understand without the help of a
dedicated tool. The DIM System provides a tool - DID, the Distributed Information Display - that allows
the visualization of the processes involved in the application as shown in the Figure.

DID allows the visualisation of the Servers composing the application: they can all be desplayed (as in the
example) or they can be selected by the machine where they are running or by the Services they provide.

For each Server the list of current clients can be
displayed providing information on their process
names or PIDs and machine names:

And the list of Services provided can be visualised (together with information about the server itself like its
PID and the machine where it is running):

dim_tools

http://dim.web.cern.ch/dim/dim_tools.html Page 6 of 68

07/22/2002

By Selecting one of the services its contents can be
displayed:

dim_user

http://dim.web.cern.ch/dim/dim_user.html Page 7 of 68

07/22/2002

DIM
Distributed Information Management

System

User Manual
This chapter describes the DIM interface , i.e. the functionality provided by the server and client libraries as
well as some examples on how they can be used.

Two different interfaces are available:

The C++ Interface
The C and Fortran Interfaces

Dim

http://dim.web.cern.ch/dim/DimCpp.html Page 8 of 68

07/22/2002

library : DIM

Authors : C. Gaspar and Ph. Charpentier

Version : 1.0

Please have a look at a few simple examples first.

Server Classes

Class : DimServer
Class : DimService
Class :
DimCommand
Class : DimRpc

Client Classes

Class : DimClient
Class : DimInfo
Class : DimCurrentInfo
Class : DimRpcInfo
Class : DimStampedInfo
Class : DimUpdatedInfo

Utility Classes

Class : DimBrowser
Class : DimTimer

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

A very simple server:

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 9 of 68

07/22/2002

A Few Simple Examples

The Server publishes one service (integer value)

#include <dis.hxx>

int main()
{
 int run = 0;
 DimService runNumber("DELPHI/RUN_NUMBER",run);
 DimServer::start("RUN_INFO");
// ...
}

The Client subscribes to the service,
requesting it to be updated every 5 seconds.
If the service is not available the value "-1" should be received
instead.

#include <dic.hxx>

int main()
{
 DimInfo runNumber("DELPHI/RUN_NUMBER",5,-1);
// ...
 cout << "Run Number " << runNumber.getInt() << endl;
}

The Server publishes one service (integer value)
and updates it from time to time (when it changes):

#include <dis.hxx>

int main()
{
 int run = 0;
 DimService runNumber("DELPHI/RUN_NUMBER",run);
 DimServer::start("RUN_INFO");
 while(1)
 {
// ...
 run++;
 runNumber.updateService();
 }
}

A very simple server:

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 10 of 68

07/22/2002

The Client subscribes to one service and
executes a method when the service gets updated
(when the server executes updateService()):

#include <dic.hxx>

class RunNumber : public DimInfo
{
 void infoHandler()
 {
 cout << "Run Number " << getInt() << endl;
 }
 public :
 RunNumber() : DimInfo("DELPHI/RUN_NUMBER",-1) {};
};

int main()
{
 RunNumber runNumber;
 while(1)
 pause();
}

The Server can receive commands (a string):

#include <dis.hxx>

class Command: public DimCommand
{
 void commandHandler()
 {
 cout << "Received : " << getString() << endl;
 }
 public:
 Command() : DimCommand("DELPHI/TEST/CMND","C");
};

int main()
{
 Command cmnd;
 DimServer::start("TEST");
 while(1)
 pause();
}

The client sends a command:

#include <dic.hxx>

A very simple server:

http://dim.web.cern.ch/dim/dim_cpp_examples.html Page 11 of 68

07/22/2002

int main()
{
 DimClient::sendCommand("DELPHI/TEST/CMND","DO_IT");
}

DimServer

http://dim.web.cern.ch/dim/DimServer.html Page 12 of 68

07/22/2002

Class: DimServer

Library: DIM
Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

 To be used by DIM Servers - Implements mainly static methods related to the Server.
 DimServer::start(<server name>) should be called after DimServices and/or DimCommands
 have been created, in order to register them within the DIM Name Server.
 DimServices created after "start" has been called will be automatically registered.
 The class DimServer can be inherited by user classes wishing to handle multiple
DimCommands
 in the same class. Please refer to Usage for examples on the use of DimServer.

Constructors :

public DimServer () ;

Public Function :

static void start (char * name) ; Starts the Server i.e. Publishes all declared services and
starts serving Client Requests. Services declared afterwards may or may not be automatically
registered within the Name Server depending on the autoStart flag.
static void autoStartOn () ; Instructs the server to immediately register any new services after
the first start(name) to the name server without waiting for a new start(name). This is the default.
static void autoStartOff () ; Instructs the server to wait for a new start(name) in order to
register newly declared services.
static int getClientId () ; Get Current Client Identifier, returns a non-zero id only if the server
is currently serving a Client, i.e inside the virtual methods : commandHandler and clientExitHandler.
static char *getClientName () ; Get Current Client Name, returns a non-zero name of the
form "task@node" only if the server is currently serving a Client.
static addClientExitHandler (DimServer *handler) ; Instruct the Server to execute the
virtual method clientExitHandler whenever "special" clients die. A client can declare himself has a
"special" client by executing setExitHandler or the Server can choose a client to be one of the
"special" clients by using the two next methods.
static setClientExitHandler (int clientId) ; Sets a client exit handler for the client which
clientId was returned from getClient().
static clearClientExitHandler (int clientId) ; Cancels the exit handler for clientId.
virtual void clientExitHandler () ; To be overloaded by the user. Gets called when "special"
clients die.

 Virtual methods for Command Handling

DimServer

http://dim.web.cern.ch/dim/DimServer.html Page 13 of 68

07/22/2002

virtual void commandHandler () ; The Server can be a DimCommand handler when
multiple commands are to be treated as in the example.
DimCommand* getCommand () ; Can be used inside "commandHandler" in order to return
a pointer to the command beeing handled.

Usage :

 The DimServer class implements Server functions - the most important is "start".
 Example:

 DimService runNumber("DELPHI/RUN_NUMBER",123);
 DimServer::start("DelphiServer");

 DimServer can be used as a base class when the user class wishes to handle DimCommands
using
 Handlers.
 Example:

 class Handler : public DimServer
 {
 DimCommand cmd;
 int val;
 void commandHandler() { val = cmd.getInt(); };
 public:
 Handler() :
 cmd("TEST/CMD", "I", this) {val = 0; };
 };

 The DimServer can also be used to set up exit handlers to be executed when "special" clients
die.
 The installation of a exit handler for a client can be done in two ways:

 - The client decides it is one of the "special" ones. Example: The Server should die when the
 client dies.

 Server Part:

 class ClientHandler : public DimServer
 {
 public:
 ClientHandler() {
 DimServer::addClientExitHandler(this);
 DimServer::start("TheServer"); };
 void clientExitHandler() {
 cout << "Client " << getClientName() << " died" << endl;
 exit(0);
 };
 };

DimServer

http://dim.web.cern.ch/dim/DimServer.html Page 14 of 68

07/22/2002

 Client Part:

 main()
 {
 DimClient::setExitHandler("TheServer");
 ...
 }

 - The server decides a client is "special" - example: The Server wants to be "released"
when the
 client that "allocated" it dies.

 class Allocation : public Server
 {
 DimCommand *allocate;
 int allocationState;
 public:
 Allocation() {
 allocate = new DimCommand("SRV/ALLOCATE","I",this);
 DimServer::addClientExitHandler(this);
 DimServer::start("SRV"};
 void commandHandler(); {
 if (getInt() == 1) { // Client Allocated
 allocateState = 1;
 DimServer::setClientExitHandler(DimServer::getClientId()); // Set the exitHandler for this
client
 }
 else { // Client Released
 allocateState = 0;
 DimServer::clearClientExitHandler(DimServer::getClientId()); // Clear the exitHandler for
this client
 }
 void clientExitHandler() { // Client died (while Allocated) - Release
 cout << "Client " << getClientName() << " died" << endl;
 allocateState = 0;
 };
 };

Last update : 02/15/99 17:40:42 by MkHelp 1.1.0

DimService

http://dim.web.cern.ch/dim/DimService.html Page 15 of 68

07/22/2002

Class: DimService
Library: DIM
Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

 To be used by DIM Servers - Implements Service creation.
 DimService constructors add a DIM Service to the list of known services.
 The DimServices will only be registered (published) and served after "Starting" the
DimServer.
 Please refer to Usage for examples of DimServices.

Constructors :

 First parameter is the Service Name. Since the clients might request the service at regular time
 intervals the value parameter should be the address of a variable that has a live time similar to
the
 DimService itself.

public DimService (char * name, int & value) ;
public DimService (char * name, float & value) ;
public DimService (char * name, double & value) ;
public DimService (char * name, char * value) ;
public DimService (char * name, char * format, void * value, int size) ; The format
parameter specifies the contents of the structure in the form T:N[;T:N]*[;T] where T is the item type:
(I)nteger, (C)arachter,(L)ong,(S)hort,(F)loat,(D)ouble and N is the number of such items. The type
alone at the end means all following items are of the same type. Example: "I:3;F:2;C" means 3
Integers, 2 Floats and Characters until the end. The format parameter is used for communicating
between different platforms.

Destructors :

public ~ DimService () ;

Public Functions :

 Update Methods
 All update methods return the number of clients updated.

int updateService () ; The current value of the same variable
int updateService (int &value) ; The variable changed address (and size)
int updateService (float &value) ;
int updateService (double &value) ;
int updateService (char * string) ;

DimService

http://dim.web.cern.ch/dim/DimService.html Page 16 of 68

07/22/2002

int updateService (void *structure, int size);

 Selective Update Methods

 Like the Update methods but do not update all clients.

 - Update only the current client (if inside a Command callback) - clientIds = 0

 - Update the list of clients specified by an array of client Ids (terminated by 0).

 Client Ids can be obtained by DimServer::getClientId() inside a Command callback

int selectiveUpdateService (int *clientIds) ;
int selectiveUpdateService (int &value, int *clientIds) ;
int selectiveUpdateService (float &value, int *clientIds) ;
int selectiveUpdateService (double &value, int *clientIds) ;
int selectiveUpdateService (char * string, int *clientIds) ;
int selectiveUpdateService (void *structure, int size, int *clientIds);

 Methods for Time Stamping and Quality flag (only meaningfull when the client
requests it
 by using DimStampedInfo). The Server time stamps the service and sets the quality
flag to zero
 when this feature is requested by the client but the following methods allow the user to
override the default.
 These settings will be sent to the client with the next update of service data.

void setQuality (int quality) ; The quality flag - zero by default
void setTimestamp (int secs, int millisecs) ; The time stamp - Set by default to the current
time.

Usage :

 DimService creation example:

- The Server Updates the service (i.e. sends it to the client) whenever the contents change

 int run = 123;
 DimService runNumber("DELPHI/RUN_NUMBER",run);
 DimServer::start("DelphiServer");
 ...
 run++;
 runNumber.updateService();

- The Server Does not explicitly Update the service: it will get updated (i.e. sent to the client)
 with the current contents at the time interval specified by each client.

 float trigger_rate;
 DimService runNumber("DELPHI/TRIGGER_RATE",trigger_rate);
 DimServer::start("DelphiServer");

DimService

http://dim.web.cern.ch/dim/DimService.html Page 17 of 68

07/22/2002

 ...
 trigger_rate = calculate_trigger_rate();

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

DimCommand

http://dim.web.cern.ch/dim/DimCommand.html Page 18 of 68

07/22/2002

Class: DimCommand

Library: DIM
Author: Ph. Charpentier

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

 To be used by DIM Servers - Implements Command creation.
 DimCommand constructors add a DIM Command to the list of known services.
 The DimCommand will only be registered (published) and served after "Starting" the
DimServer.
 DimCommands can be treated either by a command handler (asynchronously) or be queued and
 retrieved to the user when requested, please refer to Usage for examples.

Constructors :

public DimCommand (char * name, char * format) ; Create a DimCommand. Format
parameter specifies the contents of the expected data in the form T:N[;T:N]*[;T] where T is the item
type: (I)nteger, (C)arachter,(L)ong,(S)hort,(F)loat,(D)ouble and N is the number of such items. The
type alone at the end means all following items are of the same type. Example: "I:3;F:2;C" means 3
Integers, 2 Floats and Characters until the end. The format parameter is used for communicating
between different platforms.
public DimCommand (char * name, char * format, DimCommandHandler *
handler); Format parameter as above. A handler can be specified if a different class is handling the
command (specially useful if a class is handling multiple commands, as in the example).

Destructors :

public ~ DimCommand () ;

Public Functions :

 Generic

char* getName () ; Get the command name.

 Without a commandHandler

int getNext () ; Get Next queued command. returns 1 if there is a command queued, 0
otherwise. After a getNext is issued and until the next one the methods in "Access to the Command
Data" can be used in order to retrieve the command data.

 With a Handler

DimCommand

http://dim.web.cern.ch/dim/DimCommand.html Page 19 of 68

07/22/2002

virtual void commandHandler () ; To be overloaded if the user specified a handler. The
methods in "Access to the Command Data" can be used inside the Handler in order to retrieve the
command data:

 Access to the Command Data

int getInt () ; For an integer command.
float getFloat () ; A float.
double getDouble () ; A double.
char* getString () ; A character string.
void* getData () ; A structure or a vector.
int getSize () ; The size of the command data.

 To find out which command it is (if same handler for multiple commands)

DimCommand * getCommand () ; The command received (See example)

Usage :

 DimCommands can be created in three different ways
 Examples:

 - Without a handler:

 DimCommand runCmnd("DELPHI/RUNCMND","C");
 DimServer::start("DelphiServer");
 ...
 while(1)
 {
 sleep(5);
 while(runCmnd.getNext()) {
 //treat the command
 char *cmnd = runCmnd.getString();
 ...
 }

 - Using a commandHandler

 class RunCmnd : public DimCommand // In order to inherit "commandHandler"
 {
 // Overloaded method commandHandler called whenever commands arrive,
 void commandHandler()
 { //treat the command
 cout << "command " << getString() << " received" << endl;
 }
 public:
 // The constructor initializes the DimCommand
 RunCmnd() : DimCommand("/DELPHI/RUNCMND", "C") {};
 };

DimCommand

http://dim.web.cern.ch/dim/DimCommand.html Page 20 of 68

07/22/2002

 - Using a CommandHandler for multiple Commands

 class RunCmnds : public DimServer // In order to inherit "commandHandler"
 {
 DimCommand *runNumber;
 DimCommand *runType;
 // Overloaded method commandHandler called whenever commands arrive,
 void comandHandler()
 {
 if(getCommand() == runNumber)
 {
 int run = getInt();
 // treat runNumber command
 }
 else
 {
 char *type = getString();
 // treat runType command
 }
 }
 public:
 // The constructor creates the Commands
 RunCmnds()
 {
 runNumber = new DimCommand("/DELPHI/RUN_NUMBER/CMD", "I", this);
 runType = new DimCommand("/DELPHI/RUN_TYPE/CMD", "C", this);
 }
 };

Last update : 02/19/99 12:49:03 by MkHelp 1.1.0

DimService

http://dim.web.cern.ch/dim/DimRpc.html Page 21 of 68

07/22/2002

Class: DimRpc

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

 To be used by DIM Servers - Implements RPC Service creation.
 DimRpc constructors add a DIM Service of RPC type to the list of known services.
 The DimRpcs as DimServices will only be registered (published) and served after "Starting"
the DimServer.
 Please refer to Usage for an example of DimRpc creation.

Constructors :

 First parameter is the Service Name.

public DimRpc (char * name, char * format_in, char *format_out) ; The format
parameters specifies the contents of the data to be received (format_in) and to be sent in response
(format_out) in the form T:N[;T:N]*[;T] where T is the item type: (I)nteger, (C)haracter, (L)ong,
(S)hort, (F)loat, (D)ouble and N is the number of such items. The type alone at the end means all
following items are of the same type. Example: "I:3;F:2;C" means 3 Integers, 2 Floats and
Characters until the end. The format parameters are used for communicating between different
platforms.

Destructors :

public ~ DimRpc () ;

Public Functions :

 Handler: Gets Called when an RPC is requested by a Client (DimRpcInfo)

virtual void rpcHandler () ; // Has to be provided by the user.

 Get Methods: To be used inside rpcHandler in order to get the data received from the client

int getInt () ; // Get an Integer
float getFloat () ;
double getDouble ();
char *getString ();
int getSize (); //Get the size of the data (for complex types)
void *getData (); //Get the data (for complex types)

 Set Methods: To be used inside rpcHandler in order to send the result back to the client

DimService

http://dim.web.cern.ch/dim/DimRpc.html Page 22 of 68

07/22/2002

int setData (int &value) ; //Send back an Integer
int setData (float &value) ;
int setData (double &value) ;
int setData (char * string) ;
int setData (void *data, int size); //Send back complex data

Usage :

 DimRpc example:

 #include "dis.hxx"

 class RpcInt : public DimRpc
 {

 void rpcHandler()
 {
 int val;
 val = getInt();
 val++;
 setData(val);
 }
 public:
 RpcInt(char *name): DimRpc(name,"I","I") { };
 };

 main()
 {
 RpcInt testRpcInt("TESTRPC/INT");

 DimServer::start("TESTRPC");
 while(1)
 pause();
 }

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

DimClient

http://dim.web.cern.ch/dim/DimClient.html Page 23 of 68

07/22/2002

Class: DimClient

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

 To be used by DIM clients - implements static methods relating to the Client
 Mainly Sending Commands to Servers.
 The methods sendCommand(...) will wait for the command to be actualy sent to the Server
 and return a completion code of :
 1 - if it was successfully sent.
 0 - if it couldn't be delivered.
 The exception beeing: if the user calls this method inside a Handler (infoHandler,
serviceHandler,
 commandHandler and clientExitHandler) the command will be sent but without waiting for
reception
 and the return code is not reliable (in order to avoid deadlocks).

 The methods sendCommandNB(...) are Non Blocking, i.e. they do not wait for the command to
be sent.

 They should be used inside callback routines to avoid deadlocks

Public Functions :

static int sendCommand (char * name, int data) ; //Send Integer as Command
static int sendCommand (char * name, float data) ; //Send Float as Command
static int sendCommand (char * name, double data) ; //Send Double
static int sendCommand (char * name, char * data) ; // Send a Character String
static int sendCommand (char * name, void * data, int datasize) ; //Send a structure
or a vector
static int sendCommandNB (char * name, int data) ; //Send Integer as Command
static int sendCommandNB (char * name, float data) ; //Send Float as Command
static int sendCommandNB (char * name, double data) ; //Send Double
static int sendCommandNB (char * name, char * data) ; // Send a Character String
static int sendCommandNB (char * name, void * data, int datasize) ; //Send a
structure or a vector
static setExitHandler (char * serverName) ; //Inform the Server that this client would like
the Server to execute an ExitHandler when it dies.

 Methods for Service Info Handling

DimClient

http://dim.web.cern.ch/dim/DimClient.html Page 24 of 68

07/22/2002

virtual void infoHandler () ; The method to be overloaded by the user, DimClient can be
used as a base class when the user wishes to handle multiple DimInfo Services using the same
handler. Example.
DimInfo* getInfo () ; Can be used inside "infoHandler" in order to return a pointer to the
DimInfo service currently beeing handled.

Usage :
 setExitHandler Example

 sendCommand Example:

 main()
 {
 DimClient::sendComamnd("SRV/ALLOCATE", 1);
 ...
 DimClient::sendCommand("SRV/ALLOCATE", 0);
 }

Last update : 02/19/99 12:49:03 by MkHelp 1.1.0

DimInfo

http://dim.web.cern.ch/dim/DimInfo.html Page 25 of 68

07/22/2002

Class: DimInfo

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

 To be used by DIM clients - implements DIM service subscription and reception
 DimInfo constructors subscribe to DIM services.
 DimInfo Services can be requested to be updated when the contents change and/or at regular
time intervals.
 The services are received at startup, when the server updates them or after a timeout limit if
the parameter "time" is specified.
 This gives the following possibilities:

 - Receive the service at startup and then
 - Receive the service only when the server updates it
 - no "time" parameter
 - Receive the service at regular time intervals (if the server doesn't update it) or
 - Receive the service at regular intervals and also when the server updates it
 - some "time" parameter
 - Receive the service when the server updates it, but also after a timeout (to make sure the
server is alive)
 - longish "time" parameter

 Note: The parameter "time" is sent to the server. It is the server that updates the services
even on the time basis

 Please refer to Usage for examples.

Constructors :

 Constructors for Services updated only by the server

public DimInfo (char * name, int nolink) ; Integer Service
public DimInfo (char * name, float nolink) ; Float Service
public DimInfo (char * name, double nolink) ; Double Service
public DimInfo (char * name, char * nolink) ; Character String Service
public DimInfo (char * name, void * nolink, int nolinksize) ; Structure (mix types)
Service

 Constructors for Services updated (also) on a time basis

public DimInfo (char * name, int time, int nolink) ; Integer Service
public DimInfo (char * name, int time, float nolink) ; Float Service
public DimInfo (char * name, int time, double nolink) ; Double Service

DimInfo

http://dim.web.cern.ch/dim/DimInfo.html Page 26 of 68

07/22/2002

public DimInfo (char * name, int time, char * nolink) ; Character String Service
public DimInfo (char * name, int time, void * nolink, int nolinksize) ; Structure (mix
types) Service

 Constructors for Services with a Handler for multiple Services (without time)

public DimInfo (char * name, int nolink, DimInfoHandler * handler) ; Integer
Service
public DimInfo (char * name, float nolink, DimInfoHandler * handler) ; Float
Service
public DimInfo (char * name, double nolink, DimInfoHandler * handler) ; Double
Service
public DimInfo (char * name, char * nolink, DimInfoHandler * handler)
; Character String Service
public DimInfo (char * name, void * nolink, int nolinksize, DimInfoHandler *
handler) ; Structure (mix types) Service

 Constructors for Services with a Handler for multiple Services (with time)

public DimInfo (char * name, int time, int nolink, DimInfoHandler * handler)
; Integer Service
public DimInfo (char * name, int time, float nolink, DimInfoHandler * handler)
; Float Service
public DimInfo (char * name, int time, double nolink, DimInfoHandler * handler)
; Double Service
public DimInfo (char * name, int time, char * nolink, DimInfoHandler * handler)
; Character String Service
public DimInfo (char * name, int time, void * nolink, int nolinksize,
DimInfoHandler * handler) ; Structure (mix types) Service

Destructors :

public ~ DimInfo () ; Dim Service Destructor

Public Functions :

char* getName () ; Get the Service Name
void* getData () ; Get the Service Contents
int getInt () ; Get Integer Service Contents
float getFloat () ; Get Float Service Contents
double getDouble () ; Get Double Service Contents
char* getString () ; Get String Service Contents
int getSize () ; Get the Service Size.
virtual void infoHandler () ; To be overloaded if Handler specified

Usage :

DIM Client Services (DimInfo) can be used in several ways:

DimInfo

http://dim.web.cern.ch/dim/DimInfo.html Page 27 of 68

07/22/2002

- The user variable is of type DimInfo
 Example : The Service is received when the Server updates it

main()
{
 DimInfo runNumber("DELPHI/RUN_NUMBER", -1);
 while(1)
 {
 ...
 cout << runNumber.getInt() << endl;
 }
}

 Example : The Service is received when the Server updates it and every 30 seconds
otherwise

main()
{
 DimInfo runNumber("DELPHI/RUN_NUMBER", 30, -1);
 while(1)
 {
 ...
 cout << runNumber.getInt() << endl;
 }
}

 Example : The Service is received at regular intervals of 5 seconds (the Server does
not explicitly update it)

main()
{
 DimInfo triggerRate("DELPHI/TRIGGER_RATE", 5, -1.0);
 while(1)
 {
 ...
 cout << triggerRate.getFloat() << endl;
 }
}

- Inheritance: The user class inherits from DimInfo
 Example:

class RunNumber: public DimInfo

DimInfo

http://dim.web.cern.ch/dim/DimInfo.html Page 28 of 68

07/22/2002

{
public:
 // subscribe to service with handler
 RunNumber(): DimInfo("DELPHI/RUN_NUMBER", -1) {}
 void infoHandler() {cout << getInt() << endl;} // update handler
};

- A class subscribes to many DimServices with only one handler
 Example:

class RumVars : public DimClient // inheritance necessary because a handler is to be used
{
 DimInfo runNumber;
 DimInfo runType;
public:
 RunVars:
 runNumber("DELPHI/RUN_NUMBER", -1, this), // subscribe with handler
 runType("DELPHI/RUN_TYPE", "not available", this), // subscribe with handler
 {}
 void infoHandler() {
 DimInfo *curr = getInfo() // get current DimInfo address
 if(curr == &runNumber) { int run = curr->getInt() };
 else { char *type = curr->getString() };
 //etc.
 }
};

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

DimCurrentInfo

http://dim.web.cern.ch/dim/DimCurrentInfo.html Page 29 of 68

07/22/2002

Class: DimCurrentInfo

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

 To be used by DIM clients - implements blocking DIM service reception
 DimCurrentInfo constructors subscribe to DIM services.
 Required Parameters: the Service Name and the value to receive when service not available
 The methods get() wait for the Service to arrive if it has not arrived yet. Once the service
contents
 are received the Service is discarded (The client disconnects from the server).

Constructors :

public DimCurrentInfo (char * name, int nolink) ; Integer Service
public DimCurrentInfo (char * name, float nolink) ; Float Service
public DimCurrentInfo (char * name, double nolink) ; Double Service
public DimCurrentInfo (char * name, char * nolink) ; String Service
public DimCurrentInfo (char * name, void * nolink, int nolinksize) ; Structure
Service

Destructors :

public ~ DimCurrentInfo () ;

Public Functions :

int getInt () ; Get Integer Service contents
float getFloat () ; Get Float Service Contents
double getDouble () ; get Double Service Contents
char* getString () ; Get String Service contents
void* getData () ; Get the Service contents
int getSize () ; Get Service contents Size

Usage :
 Example:
 DimCurrentInfo runNumber("DELPHI/RUN_NUMBER",-1);
 cout << runNumber.getInt() << endl;

Last update : 02/11/99 17:42:12 by MkHelp 1.1.0

DimService

http://dim.web.cern.ch/dim/DimRpcInfo.html Page 30 of 68

07/22/2002

Class: DimRpcInfo

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Description :

 To be used by DIM clients - implements RPC subscription (blocking or non-blocking)
 Required Parameters: the Service Name and the value (nolink) to receive when RPC service
not available
 The methods set() and get() are used to send and receive data to and from the server.
 Please refer to Usage for examples on how to use DimRpcInfo.

Constructors :

public DimRpcInfo (char * name, int nolink) ; Integer reception expected
public DimRpcInfo (char * name, float nolink) ;
public DimRpcInfo (char * name, double nolink) ;
public DimRpcInfo (char * name, char * nolink) ;
public DimRpcInfo (char * name, void * nolink, int nolinksize) ; Complex data

Destructors :

public ~ DimRpcInfo () ;

Public Functions :

 Set Methods: To be used to send the RPC request (data) to the Server

int setData (int &value) ; //Send an Integer
int setData (float &value) ;
int setData (double &value) ;
int setData (char * string) ;

int setData (void *data, int size); //Send complex data

 Handler: If the user implements it, it gets Called when an RPC answer is received
(DimRpc)

virtual void rpcInfoHandler () ; // Can be provided by the user for non-blocking reception
of RPCs

 Get Methods: To get the data received from the server: Can be used for blocking reception of
RPCs or
 inside rpcInfoHandler in order to get the data received from the server

DimService

http://dim.web.cern.ch/dim/DimRpcInfo.html Page 31 of 68

07/22/2002

int getInt () ; // Get an Integer
float getFloat () ;
double getDouble ();
char *getString ();
int getSize (); //Get the size of the data (for complex types)
void *getData (); //Get the data (for complex types)

Usage :

 DimRpcInfo non-blocking example:

 #include "dic.hxx"

 class Rpc : public DimRpcInfo
 {
 void rpcInfoHandler() {
 int valin;
 valin = getInt();
 cout << "Callback RPC Received : " << valin << endl;
 }
 public:
 Rpc(char *name) : DimRpcInfo(name, -1) { };
 };

 main()
 {
 int rpcCBValue = 0;
 Rpc rpcCB("TESTRPC/INT");

 while(1)
 {
 rpcCB.setData(rpcCBValue);
 sleep(5);
 }
 }

 DimRpcInfo blocking example:

 #include "dic.hxx"

 main()
 {
 int rpcValue = 0;
 DimRpcInfo rpc("TESTRPC/INT",-1);

 while(1)
 {
 rpc.setData(rpcValue);
 rpcValue = rpc.getInt();
 sleep(5);

DimService

http://dim.web.cern.ch/dim/DimRpcInfo.html Page 32 of 68

07/22/2002

 }
 }

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

DimInfo

http://dim.web.cern.ch/dim/DimStampedInfo.html Page 33 of 68

07/22/2002

Class: DimStampedInfo
Library: DIM
Author: C. Gaspar

Version: v1.0 Update : Wed Apr 05 15:52:46 2000

Descrition :

 To be used by DIM clients - implements DIM service subscription and reception for
 time stamped (and quality flaged) services
 DimStampedInfo requests the server to send together with the service data a quality flag and a
timestamp
 DimStampedInfo inherits its behaviour from DimInfo, please refer to it for detailed description.

 Please refer to Usage for examples.

Constructors (as for DimInfo):

 Constructors for Services updated only by the server

public DimStampedInfo (char * name, int nolink) ; Integer Service
public DimStampedInfo (char * name, float nolink) ; Float Service
public DimStampedInfo (char * name, double nolink) ; Double Service
public DimStampedInfo (char * name, char * nolink) ; Character String Service
public DimStampedInfo (char * name, void * nolink, int nolinksize) ; Structure
(mix types) Service

 Constructors for Services updated (also) on a time basis

public DimStampedInfo (char * name, int time, int nolink) ; Integer Service
public DimStampedInfo (char * name, int time, float nolink) ; Float Service
public DimStampedInfo (char * name, int time, double nolink) ; Double Service
public DimStampedInfo (char * name, int time, char * nolink) ; Character String
Service
public DimStampedInfo (char * name, int time, void * nolink, int nolinksize)
; Structure (mix types) Service

 Constructors for Services with a Handler for multiple Services (without time)

public DimStampedInfo (char * name, int nolink, DimInfoHandler * handler)
; Integer Service
public DimStampedInfo (char * name, float nolink, DimInfoHandler * handler)
; Float Service
public DimStampedInfo (char * name, double nolink, DimInfoHandler *
handler) ; Double Service
public DimStampedInfo (char * name, char * nolink, DimInfoHandler * handler)
; Character String Service

DimInfo

http://dim.web.cern.ch/dim/DimStampedInfo.html Page 34 of 68

07/22/2002

public DimStampedInfo (char * name, void * nolink, int nolinksize,
DimInfoHandler * handler) ; Structure (mix types) Service

 Constructors for Services with a Handler for multiple Services (with time)

public DimStampedInfo (char * name, int time, int nolink, DimInfoHandler *
handler) ; Integer Service
public DimStampedInfo (char * name, int time, float nolink, DimInfoHandler *
handler) ; Float Service
public DimStampedInfo (char * name, int time, double nolink, DimInfoHandler
* handler) ; Double Service
public DimStampedInfo (char * name, int time, char * nolink, DimInfoHandler *
handler) ; Character String Service
public DimStampedInfo (char * name, int time, void * nolink, int nolinksize,
DimInfoHandler * handler) ; Structure (mix types) Service

Destructors :

public ~ DimStampedInfo () ; Dim Service Destructor

Public Functions :

 Inherited from DimInfo:

void* getData () ; Get the Service Contents
int getInt () ; Get Integer Service Contents
float getFloat () ; Get Float Service Contents
double getDouble () ; Get Double Service Contents
char* getString () ; Get String Service Contents
int getSize () ; Get the Service Size.
virtual void infoHandler () ; To be overloaded if Handler specified

 New Functionality (The information retrieved by the following methods is set by the sever
 by using the class DimService):

int getQuality () ; Get the Quality flag received with the service (set by the server)
int getTimestamp () ; Get the time stamp (in seconds since midnight, Jan 1st 1970)
int getTimestampMillisecs () ; Get the milliseconds

Usage :

DimStampedInfo can be used like DimInfo:

Example :

class RunNumber: public DimStampedInfo
{

DimInfo

http://dim.web.cern.ch/dim/DimStampedInfo.html Page 35 of 68

07/22/2002

public:
 // subscribe to service with handler
 RunNumber(): DimStampedInfo("DELPHI/RUN_NUMBER", -1) {}
 // update handler
 void infoHandler()
 {
 time_t time;
 time = getTimestamp();
 cout << " Received: " << getInt() << " Time Stamped: " << ctime(&time) <<
 "Quality: "<< getQuality() << endl;
 }
};

Last update : 02/11/99 15:53:02 by MkHelp 1.1.0

Class

http://dim.web.cern.ch/dim/DimUpdatedInfo.html Page 36 of 68

07/22/2002

Class: DimUpdatedInfo
Library: DIM
Author: C. Gaspar

Version: v1.0 Update : Wed Apr 05 15:52:46 2000

Descrition :

To be used by DIM clients - implements DIM service subscription and reception
 DimUpdatedInfo constructors subscribe to DIM services.
 DimUpdatedInfo Services can be requested to be updated when the contents change and/or at
regular time intervals.

 The difference between DimUpdatedInfo and DimInfo is that services are not received at
Startup, i.e. the first time a client subscribes to a service.
 The services are received when the server updates them or after a timeout limit if the
parameter "time" is specified.

 DimUpdatedInfo inherits its behaviour from DimInfo, please refer to it for detailed description.

 Please refer to Usage for examples.

Constructors (as for DimInfo):

 Constructors for Services updated only by the server

public DimUpdatedInfo (char * name, int nolink) ; Integer Service
public DimUpdatedInfo (char * name, float nolink) ; Float Service
public DimUpdatedInfo (char * name, double nolink) ; Double Service
public DimUpdatedInfo (char * name, char * nolink) ; Character String Service
public DimUpdatedInfo (char * name, void * nolink, int nolinksize) ; Structure (mix
types) Service

 Constructors for Services updated (also) on a time basis

public DimUpdatedInfo (char * name, int time, int nolink) ; Integer Service
public DimUpdatedInfo (char * name, int time, float nolink) ; Float Service
public DimUpdatedInfo (char * name, int time, double nolink) ; Double Service
public DimUpdatedInfo (char * name, int time, char * nolink) ; Character String
Service
public DimUpdatedInfo (char * name, int time, void * nolink, int nolinksize)
; Structure (mix types) Service

 Constructors for Services with a Handler for multiple Services (without time)

Class

http://dim.web.cern.ch/dim/DimUpdatedInfo.html Page 37 of 68

07/22/2002

public DimUpdatedInfo (char * name, int nolink, DimInfoHandler * handler)
; Integer Service
public DimUpdatedInfo (char * name, float nolink, DimInfoHandler * handler)
; Float Service
public DimUpdatedInfo (char * name, double nolink, DimInfoHandler * handler)
; Double Service
public DimUpdatedInfo (char * name, char * nolink, DimInfoHandler * handler)
; Character String Service
public DimUpdatedInfo (char * name, void * nolink, int nolinksize,
DimInfoHandler * handler) ; Structure (mix types) Service

 Constructors for Services with a Handler for multiple Services (with time)

public DimUpdatedInfo (char * name, int time, int nolink, DimInfoHandler *
handler) ; Integer Service
public DimUpdatedInfo (char * name, int time, float nolink, DimInfoHandler *
handler) ; Float Service
public DimUpdatedInfo (char * name, int time, double nolink, DimInfoHandler *
handler) ; Double Service
public DimUpdatedInfo (char * name, int time, char * nolink, DimInfoHandler *
handler) ; Character String Service
public DimUpdatedInfo (char * name, int time, void * nolink, int nolinksize,
DimInfoHandler * handler) ; Structure (mix types) Service

Destructors :

public ~ DimUpdatedInfo () ; Dim Service Destructor

Public Functions :

 Inherited from DimInfo:

void* getData () ; Get the Service Contents
int getInt () ; Get Integer Service Contents
float getFloat () ; Get Float Service Contents
double getDouble () ; Get Double Service Contents
char* getString () ; Get String Service Contents
int getSize () ; Get the Service Size.
virtual void infoHandler () ; To be overloaded if Handler specified

Usage :

DimUpdatedInfo can be used exactly like DimInfo:

DimClient

http://dim.web.cern.ch/dim/DimBrowser.html Page 38 of 68

07/22/2002

Class: DimBrowser

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

 To be used by DIM processes - implements DIM environment browsing.
 Allows Getting Information on Services, Servers and Clients available.
 Please refer to Usage for examples

Public Functions :

char *getServices (char * wildcardServiceName); // Check if a Service or Services
(wildcards allowed) are available and if so what is their format. Returns an empty string if none
available otherwise a string: <service name>|<service_format>[|CMD][|RPC]'\n'<service... (where
CMD means the service is a command, RPC means it can be accessed by DimRpcInfo). The
service_format is the one given to DimService, DimCommand or DimRpc
char *getServers (); // Get the list of all servers available in the system. Format:
<server_name>@<node_name>|<server...
char *getServerServices (char * serverName); // Get the list of all services provided by a
server. Format: <service_name>|<service_format>[|CMD][|RPC]'\n'<service... (where CMD
means the service is a command, RPC means it can be accessed by DimRpcInfo). The
service_format is the one given to DimService, DimCommand or DimRpc
char *getServerClients (char * serverName); // Get the list of clients of a server. Format:
<process>@<node_name>|<process...

 Methods for Decoding the information of the above calls

int getNextService (char * serviceName, char *format); // can be called after a
getServices() call. It will return the type of the Service (DimSERVICE, DimCOMMAND or
DimRPC) or 0 if no more services. If successfull it will return the service name and its format. The
format is the one given to DimService, DimCommand or DimRpc
int getNextServer (char *server, char *node); // can be called after a getServers() call.
It will return 1 while there are servers in the list, 0 otherwise. If successfull it will return the server
name and the node where it runs.
int getNextServerService (char *serviceName, char *format); // can be called after a
getServerServices() call. It will return the type of the Service (DimSERVICE, DimCOMMAND or
DimRPC) or 0 if no more services. If successfull it will return the service name and its format. The
format is the one given to DimService, DimCommand or DimRpc
int getNextServerClient (char *clientName, char *node); // can be called after a
getServerClients() call. It will return 1 while there are clients in the list, 0 otherwise. If successfull it
will return the client name and the node where it runs.

Usage :

DimClient

http://dim.web.cern.ch/dim/DimBrowser.html Page 39 of 68

07/22/2002

 #include <dic.hxx>

 main()
 {
 DimBrowser dbr;
 char *server; *node, *service, *format;
 int type;

 dbr.getServers();
 while(dbr.getNextServer(server, node))
 {
 cout << server << " @ " << node << endl;
 dbr.getServerServices(server);
 while(type = dbr.getNextServerService(service, format))
 ...
 }
 }

Or :

 #include <dic.hxx>

 main()
 {
 DimBrowser dbr;
 char *service; *format;
 int type;

 dbr.getServices("*DELPHI/MUON*");
 while(type = dbr.getNextService(service, format))
 {
 cout << service << " - " << format << endl;
 ...
 }
 }

Last update : 02/19/99 12:49:03 by MkHelp 1.1.0

DimTimer

http://dim.web.cern.ch/dim/DimTimer.html Page 40 of 68

07/22/2002

Class: DimTimer

Library: DIM
Author: C. Gaspar

Version: v1.0 Update :Thu Feb 11 15:52:46 1999

Descrition :

 Utility Class - Implements Asynchronous TimeOut Handling

Constructors :

DimTimer (int time) ; Start the Timer - parameter time is number of seconds
DimTimer () ;

Public Functions :

void start (int time) ; Start the Timer - parameter time is number of seconds
void stop () ; Stop the timer
virtual void timerHandler () = 0;

Usage :

 Example:

class Tim : public DimTimer
{
public:
 Tim(int time)
 {
 start(time);
 };
 void timerHandler()
 {
 cout << "Timer Expired" << endl;
 }
};

 Or:

class Tim : public DimTimer
{
public:
 Tim(int time) : DimTimer(time) {};
 void timerHandler()
 {
 cout << "Timer Expired" << endl;

DimTimer

http://dim.web.cern.ch/dim/DimTimer.html Page 41 of 68

07/22/2002

 }
};

Last update : 02/19/99 12:49:03 by MkHelp 1.1.0

dimC

http://dim.web.cern.ch/dim/dimC.html Page 42 of 68

07/22/2002

DIM
Distributed Information Management

System

C (and Fortran) Interface
This chapter describes the routines provided by the server and client libraries as well as some examples on
how they can be used.

The Server library implements the DIM server functionality. In order to become a DIM server a process can
use the following routines:

DIS_ADD_SERVICE - Declare each Service it can provide.
DIS_ADD_CMND - Declare each Command Services (if any) it is willing to execute.
DIS_START_SERVING - Send the list of provided Services and Commands to the Name
Server and start serving client requests. The library takes care of handling all client requests and
updating the Service data according to the mechanism specified by the client.
DIS_UPDATE_SERVICE - A server can force an update of the Service when it knows the
information contained in the service has changed.

The Client library implements the DIM client functionality. In order to become a DIM client a process can
use the following routines:

DIC_INFO_SERVICE - Request a service providing the update type (at regular time intervals or
when the information changes) and the update mechanism (either a callback routine or a buffer
update). The library will take care of contacting the Name Server, find out which server provides the
service, connect to the server, request the service and update the service according to the specified
mechanism whenever the service data arrives.
DIC_CMND_SERVICE - Request the execution of a command. The library will take care of
contacting the Name Server, find out which server provides the command, connect to the server and
tell it to execute the command.
DIC_CMND_CALLBACK - Same as above but a callback will be executed to report success or
failure.
DIC_RELEASE_SERVICE - Release a service if it becames unnecessary.

Server Library (DIS)
Server examples
Client Library (DIC)
Client examples
Timer Utility Library (DTQ)

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 43 of 68

07/22/2002

DIM
Distributed Information Management

System

4.1 Server Library (DIS)
Detailed description of the routines contained in the Server library :

dis_add_service
Add an information service to the list of provided services.

Format

unsigned int dis_add_service (name, description, address, size,
user_routine, tag)

Arguments

char *name;

Service name, this name should be used by the client when requesting the service.

char *description;

Service description string, the contents of the service can be described in the form "T:N;T:N;T"
where T is the data type : C(char), L(ong), S(hort), D(ouble), F(loat) or X(tra long) and N is the
number of items of that type. A data type alone at the end of string means all following items are of
type T. The description string is not necessary and can be replaced by 0 when running in a non
mixed environment.

int *address;

Service address, if the data provided by this service is stored in memory (global section, array, etc)
and is to be sent as it is to the client, it's address should be given here.

int size;

Service size, the size in bytes of the data to be passed to the client if the previous parameter has
been specified.

void *user_routine;

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 44 of 68

07/22/2002

The address of a routine to be executed when it's time to send the data to a client. This routine will
provide the data, the parameters of this routine will be specified later in this document.

int tag;

A parameter to be sent to the user_routine in order to identify the service.

Returns

unsigned int service_id;

The service identifier, to be used when (if) updating or removing the service (by calling
dis_update_service or dis_remove_service).

Description

This routine has to be called once for every service provided by the server. There are two ways of
providing the service : specifying the address and size of the data to be sent to the client or
specifying the address of a routine that will provide the data.

dis_add_cmnd
Add a command service to the list of provided services.

Format

unsigned int dis_add_cmnd (name, description, cmnd_user_routine,
tag)

Arguments

char *name;

Service name, same name used by client when requesting the execution of a command.

char *description;

Service description string, the contents of the service can be described in the form "T:N;T:N;T"
where T is the data type : C(char), L(ong), S(hort), D(ouble), F(loat) or X(tra long) and N is the
number of items of that type. A data type alone at the end of string means all following items are of
type T. The description string is not necessary and can be replaced by 0 when running in a non
mixed environment.

void *cmnd_user_routine;

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 45 of 68

07/22/2002

The address of the routine to be executed when a command request is received from a client, the
parameters of this routine will be specified later in this document. This parameter is optional, if it is
specified as zero, the request will be queued and can be recovered later by calling the routine
dis_get_next_cmnd.

int tag;

A parameter to be passed to the cmnd_user_routine or to dis_get_next_cmnd in order to identify
the command service.

Returns

unsigned int service_id;

The service identifier, to be used when (if) removing the service (by calling dis_remove_service).

Description

This routine has to be called once for every command service provided by the server.

dis_start_serving
Start handling client requests.

Format

int dis_start_serving (task_name)

Arguments

char *task_name;

Task name, a string identifying the server, used by the Name server to recognize the server as well
as for monitoring and debugging purposes.

Returns

int return_code

Returns 1 if the list of services and commands were succesfully sent to the Name Server, 0
otherwise.

Description

This routine will register within the name_server all the services declared with dis_add_service and
dis_add_cmnd.

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 46 of 68

07/22/2002

It will set up the server so that it will handle client requests.

It will also set up all the mechanisms so that when a service has to be sent to a client the user_routine
that provides that service will be called or the data will be taken from the address and size provided
in dis_add_service and sent to the client.

dis_update_service
Report the change of service contents to interested clients.

Format

int dis_update_service (unsigned int service_id)

Arguments

unsigned int service_id;

The service_id returned by dis_add_service.

Returns

int n_clients;

Returns the number of updated clients.

Description

This routine should be called by the server program when there is a change for a given service (when
possible).

This routine will check whether there are clients interested in this service and if they have requested
to receive the data uppon change (monitored service) the data will be sent, either by calling the data
provider routine or by sending the specified data buffer.

dis_remove_service
Remove a Service from the list of provided services.

Format

int dis_remove_service (unsigned int service_id)

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 47 of 68

07/22/2002

Arguments

unsigned int service_id

The service_id returned by dis_add_service.

Returns

int return_code

Returns 1 if the Service was succefully removed.

Description

This routine can be called by the server program when a service stops beeing provided.

This routine will inform the Name server and all the clients using this service that it is no longer
provided. The service can from then on be provided by another server.

dis_stop_serving
Stop Serving DIM Services.

Format

void dis_stop_serving ()

Description

This routine can be called by the server program in order to stop beeing a DIM Server.

dis_get_next_cmnd
Get a command from the list of waiting command requests.

Format

int dis_get_next_cmnd (tag, buffer, size)

Arguments

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 48 of 68

07/22/2002

int *tag;

This parameter returns the tag given to dis_add_cmnd, it allows the identification of the command.

int *buffer;

A buffer address where the command request is to be copied to.

int *size;

On entry this parameter contains the size of the buffer, on exit it contains the real size of the
command request.

Returns

int return_code

Returns 0 if no command request is waiting for execution, -1 if the command request doesn't fit on
the specified buffer (truncated) and 1 if the command as been copied successfully into the user
buffer.

Description

This routine has to be called by the user if no cmnd_user_routine address has been specified in
dis_add_cmnd. It allows the user to get and execute the commands requested by a client.

user_routine
Routine written by the user in order to provide a service.

Format

void user_routine (tag, address, size)

Arguments

int *tag;

The parameter that identifies the service, the tag given to dis_add_service. Passed by reference for
FORTRAN compatibility.

int **address;

Should return the address of the data to be sent to the client.

int *size;

dis

http://dim.web.cern.ch/dim/DIM_5.HTML Page 49 of 68

07/22/2002

Should return the size in bytes of the data to be sent to the client

Description

This routine should be declared in dis_add_service if not using the address, size parameters, it will
be called whenever the service has to be sent to the client.

This routine should provide the necessary gathering or computing of data and store it in a buffer in
order to be sent as a service to a client.

cmnd_user_routine
Routine written by the user in order to execute a command when a command request is received
from a client.

Format

void cmnd_user_routine (tag, address, size)

Arguments

int *tag;

The parameter that identifies the command, the tag given to dis_add_cmnd. Passed by reference for
FORTRAN compatibility.

int *address;

The address of the buffer containing the command.

int *size;

The size in bytes of the command data. Passed by reference for FORTRAN compatibility.

Description

This routine should be declared in dis_add_cmnd for immediate execution on reception of a
command request.

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 50 of 68

07/22/2002

DIM
Distributed Information Management

System

4.3 Client Library (DIC)
Detailed description of the routines contained in the Client library :

dic_info_service
Request an information service from a server

Format

unsigned int dic_info_service (name, type, timeout, address, size,
user_routine, tag, fill_address, fill_size)

Arguments

char *name;

Service name, same name used by server when declaring the service.

int type;

Type of service, constants defined are: ONCE_ONLY, TIMED or MONITORED.

int timeout;

For a TIMED service "timeout" indicates the time interval the server should use to send new data,
for ONCE_ONLY or MONITORED services it indicates the time after which the service is
considered to have failed.

int *address;

Address of the buffer where to store the data when the service returns from the server. This
parameter can be set to 0 and only the callback routine will be executed.

int size;

The size in bytes of the previous buffer (if specified).

void *user_routine;

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 51 of 68

07/22/2002

The address of a routine to be executed when new data is returned from the server, the parameters
of this routine will be specified later in this document. Can be set to 0 if no callback routine is
necessary.

int tag;

A parameter to be sent to the user_routine in order to identify the service that has completed.

int *fill_address;

Address of a buffer containing data to be stored in the service buffer or passed to the callback
routine in case the service doesn't succeed.

int fill_size;

The size in bytes of the previous buffer.

Returns

unsigned int service_id;

The service identifier, to be used when (if) releasing the service.

Description

This routine first contacts the name server in order to get the address of the server where the
requested service is available, and then sends the request directly to the server. When the service
arrives from the server the client buffer is filled with the data and/or the user_routine is executed.

After a timeout (timeout parameter for ONCE_ONLY and MONITORED services and 2*timeout
parameter for TIMED services) the service is considered failed, the information in fill_address is
copied into the client buffer and/or the user_routine is called.

If the server is not responding the client recontacts the name server and the name server will wake
up the client as soon as the server is up.

dic_cmnd_service
Request the execution of a command by a server

Format

int dic_cmnd_service (name, address, size)

Arguments

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 52 of 68

07/22/2002

char *name;

Service name, same name used by server when declaring the command service.

int *address;

Address of the buffer containing the command data.

int size;

The size in bytes of the previous buffer.

Returns

int return_code;

Returns1 if the command was successfully requested.

Description

This routine requests the execution of a command by a server, address and size contain the
command parameters. This implies contacting the name server (if the command in not know already)
and then contacting directly the server. This routine does not report back the completion of the
command since these operations are only scheduled and may complete asynchronously.

If the server is not responding the command is discarded (in order to avoid having it sent later when
it might not be desired anymore).

This routine allows clients (user interfaces for ex.) to send commands to be executed by the servers.

dic_cmnd_callback
Request the execution of a command by a server and registers a completion callback

Format

int dic_cmnd_service (name, address, size, cmd_callback, tag)

Arguments

char *name;

Service name, same name used by server when declaring the command service.

int *address;

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 53 of 68

07/22/2002

Address of the buffer containing the command data.

int size;

The size in bytes of the previous buffer.

void *cmd_callback;

The address of a routine to be executed when the command completes, in order to report the
success or failure of the operation. The parameters of this routine will be specified later in this
document.

int tag;

A parameter to be sent to the cmd_callback in order to identify the command that has completed.

Returns

int return_code;

Returns1 if the command was successfully requested.

Description

This routine requests the execution of a command by a server, address and size contain the
command parameters. This implies contacting the name server (if the command in not know already)
and then contacting directly the server. This routine does not report back the completion of the
command since these operations are only scheduled and may complete asynchronously. The
cmd_callback routine will be executed on completion.

If the server is not responding the command is discarded (in order to avoid having it sent later when
it might not be desired anymore).

This routine allows clients (user interfaces for ex.) to send commands to be executed by the servers

dic_release_service
Called by a client when a service is not needed anymore

Format

void dic_release_service (service_id)

Arguments

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 54 of 68

07/22/2002

unsigned service_id;

The service_id returned by dic_info service.

Description

This routine tells the server not to update this service anymore and destroys all the references to it in
the client.

user_routine
Routine written by the user, called when new data arrives from a server. The user routine is called
with three parameters, please read carefully the parameter description.

Format

void user_routine (tag, buffer, size)

Arguments

int *tag;

A parameter in order to identify the service, the tag given to dic_info_service. Passed by reference
for FORTRAN compatibility

int *buffer;

This parameter contains the address of the data received from the server. If the user has supplied
"address" when calling dic_info_service buffer points to "address", otherwise it points to a
temporarily allocated buffer where the data received has been stored (in this case this buffer
address is valid only during the execution of this routine, if the data contained in this buffer has to be
used later it's the responsibility of the user to copy it to another buffer).

int *size;

The size in bytes of the data actually sent by the server. Passed by reference

Description

This routine is called on reception of data from a server, it can be used for ex. by user_interfaces in
order to update the screen whith the new set of data.

dic

http://dim.web.cern.ch/dim/DIM_7.HTML Page 55 of 68

07/22/2002

cmd_callback
Routine written by the user, called on command completion. This routine is called with two
parameters, please read carefully the parameter description.

Format

void user_routine (tag, ret_code)

Arguments

int *tag;

A parameter in order to identify the command, the tag given to dic_cmd_callback. Passed by
reference for FORTRAN compatibility

int *ret_code;

The return code: 1 if the command was successfully sent, i.e., the server was found and the
command successfully written out; 0 otherwise. Passed by reference

Description

This routine is called on command completion to check or wait for successful delivery.

dis_examples

http://dim.web.cern.ch/dim/DIM_6.HTML Page 56 of 68

07/22/2002

DIM
Distributed Information Management

System

4.2 Server examples

Examples

#1

The following example implements a C server. This server provides two services which contain the
same data, but the way of providing the data differs. The server can also execute one command and
on its reception it updates one of the services.

#include <dis.h>

int buffer[] = { 0,1,2,3,4,5,6,7,8,9 };
int service_id;

void build_service(tag, address, size)
int *tag;
int **address;
int *size;
{
 *address = buffer;
 *size = sizeof(buffer);
}

void execute_cmnd(tag, cmnd_buffer, size)
int *tag;
char *cmnd_buffer;
int *size;
{
 if(*tag == 1)
 {
 printf("SERV_CMND: Command %s received\n",cmnd_buffer);
 dis_update_service(service_id);
 }
}

main()
{

 dis_add_service("SERV_BY_BUFFER", "L", buffer, 40, 0, 0);

dis_examples

http://dim.web.cern.ch/dim/DIM_6.HTML Page 57 of 68

07/22/2002

 service_id = dis_add_service("SERV_BY_ROUTINE", "L", 0, 0,
 build_service, 0);
 dis_add_cmnd("SERV_CMND", 0, execute_cmnd, 1);
 dis_start_serving("DIS_TEST");
 while(1)
 {
 sleep(10);
 }
}

The following example implements a FORTRAN server. This server provides one information
service and one command service. On command reception it updates the information service.

 program test_server
 implicit none

 common/test_ser/service_id
 integer*4 service_id

 integer*4 dis_add_cmnd, dis_add_service
 integer*4 dis_start_serving

 external do_cmnd
 character*80 str

 str = 'Server Answer'
 service_id = dis_add_service('TEST/INFO','C',%ref(str),80,%val(0), 0)
 call dis_add_cmnd('TEST/CMND','C',do_cmnd, 0)

 call dis_start_serving('DIS_TEST')
 call sys$hiber()
 end

 subroutine do_cmnd(tag, buf, size)
 implicit none
 integer*4 tag, size
 integer*4 buf
 character*80 str
 integer*4 dis_convert_str
 common/test_ser/service_id
 integer*4 service_id

C The routine dis_convert_str converts a C string into a Fortran string
 call dis_convert_str(buf, str)
 write(6,'(A,A)') ' Server : Received ',str
 call dis_update_service(service_id)

 end

dic_examples

http://dim.web.cern.ch/dim/DIM_8.HTML Page 58 of 68

07/22/2002

DIM
Distributed Information Management

System

4.4 Client examples

Examples

#1

The following example implements a C client. The client requests two services, one TIMED (every
ten seconds) and one MONITORED. It also tells the server to execute a command.

#include <dic.h>

int buffer[10];
int no_link = -1;
int version;

buff_received(tag, bufferp, size)
int *tag, *size;
char *bufferp;
{
int i;

 if(bufferp[0] == -1)
 printf("Service SERV_BY_BUFFER not available\n");
 else
 {
 printf("received service SERV_BY_BUFFER\n\t");
 for(i=0;i<10;i++)
 printf("%d ",bufferp[i]);
 printf("\n");
 }
 printf("\n");
}

serv_received(tag, address, size)
int *tag, *address, *size;
{
int i;

 if(*address == -1)
 printf("Service SERV_BY_ROUTINE not available\n");

dic_examples

http://dim.web.cern.ch/dim/DIM_8.HTML Page 59 of 68

07/22/2002

 else
 {
 printf("received service SERV_BY_ROUTINE\n\t");
 for(i=0;i<10;i++)
 printf("%d ",buffer[i]);
 printf("\n");
 }
 printf("\n");
}

main()
{

 dic_info_service("SERV_BY_BUFFER", TIMED, 10,
 buffer, 40, buff_received, 0, &no_link,4);
 dic_info_service("SERV_BY_ROUTINE", MONITORED, 0,
 0, 0, serv_received, 0, &no_link,4);
 while(1)
 {
 dic_cmnd_service("SERV_CMND", "UPDATE", 7);
 sleep(5);
 }
}

The following example implements a FORTRAN client. This client requests a MONITORED
service and tell the server to execute a command.

 program test_client
 implicit none

 common/test_for/buff
 character*80 buff
 include 'delphi$online:[communications.dim]dic.inc'

 integer*4 dic_cmnd_service
 character*80 str
 external recv_rout
 external dic_info_service

 buff = 'empty'
 str = 'Command'
 call dic_info_service('TEST/INFO',MONITORED,0,%ref(buff),80,recv_rout,
 , 0,%val(0),0)
 do while(.TRUE.)
 call dic_cmnd_service('TEST/CMND',%ref(str),17)
 call lib$wait(10.)
 enddo
 end

dic_examples

http://dim.web.cern.ch/dim/DIM_8.HTML Page 60 of 68

07/22/2002

 subroutine recv_rout(tag)
 implicit none
 integer*4 tag
 common/test_for/buff
 character*80 buff
 write(6,'(A,A)') ' Client : Received ',buff
 end

dtq

http://dim.web.cern.ch/dim/DIM_9.HTML Page 61 of 68

07/22/2002

DIM
Distributed Information Management

System

4.5 Timer Library (DTQ)
Detailed description of the routines contained in the Timer Utility Library :

dtq_start_timer
Start a TimeOut request

Format

void dtq_start_timer (time, user_routine, tag)

Arguments

int time;

The time in seconds after which the user_routine should be called.

void *user_routine;

The address of a routine to be executed when the timer expires.

int tag;

A parameter to be sent to the user_routine in order to identify the Timeout request. Tag is also used
as Request Identifier in order to stop the timer.

Description

This routine starts a timer. When the timer expires the user_routine will be called.

dtq_stop_timer
Stop (cancel) a TimeOut request

dtq

http://dim.web.cern.ch/dim/DIM_9.HTML Page 62 of 68

07/22/2002

Format

void dtq_stop_timer (tag)

Arguments

int tag;

The parameter given to dtq_start_timer.

Description

This routine stops the timer. The user_routine will no longer be called.

dtq_sleep
Sleep for a number of seconds

Format

void dtq_sleep(time)

Arguments

int time;

The time in seconds the process should be suspended for.

Description

This routine suspends the process for the given number of seconds. In Unix the sleep function exits
when the process receives a signal, since DIM uses signals, processes using the UNIX call directly
will exit several times and it would be difficult to compute the actual time slept. dtq_sleep can be
used instead it only exits when the sleep time elapses.

user_routine
Routine written by the user, called when the timer started by dtq_start_timer expires.

Format

void user_routine (tag)

dtq

http://dim.web.cern.ch/dim/DIM_9.HTML Page 63 of 68

07/22/2002

Arguments

int tag;

The parameter that identifies the request. The tag given to dtq_start_timer.

Description

This routine is called when a timer started by dtq_start_timer expires.

Instructions for downloading, installing and running DIM on

http://dim.web.cern.ch/dim/dim_wnt.html Page 64 of 68

07/22/2002

Instructions for downloading, installing and running DIM on
Windows NT/2000
Latest version Release Notes

1. Download

get the file dim.zip
unzip (extract) dim.zip onto a DIM folder

2. Installation

Insert .../DIM/bin in the "path" (Control Panel, System, Environment tab)
set the environment variable DIM_DNS_NODE to <node name>, <node
name> is the complete name of the node where the DIM Name Server
(Dns) will run, ex. hpplus003.cern.ch. (again Control Panel, System,
Environment tab).

3. Running

If you want to run Dns in the PC: In the Command Prompt type "dns".
The DIM display tool for windows is DIM/bin/DID
From then on you can start DIM servers and clients, some example ones are
available, you can start them by:

test_server <server name>
test_client <client name> <server name>

In order to make your own servers and/or clients you have to link them with
dim.lib in DIM/bin (also dim.dll is there). The DIM/src/examples directory
contains the source code of the examples and devstudio settings to compile
and link them (dim.dsw) are available in DIM/Visual.

Instructions for downloading, installing and running DIM on

http://dim.web.cern.ch/dim/dim_unix.html Page 65 of 68

07/22/2002

Instructions for downloading, installing and running DIM on
UNIX

 Latest version Release Notes

1. Download

get the file dim.zip
extract it onto a "dim" folder using: unzip -a

2. Installation

cd dim
(please use tcsh for the following to work)

setenv OS <unix flavour>, <unix flavour> can be: HP-UX, AIX,
Solaris, SunOS, OSF1, Linux, LynxOS

source .setup

gmake [options] all

possible options:

CPP=yes or no (default = yes) : Create also the DIM
C++ class library
THREADS=yes or no (default = yes) : Use the DIM
multithreaded version
CC=cc, gcc, etc. (default = cc native compiler) : Define
which C compiler to use
CXX=CC, g++, etc. (default = CC native compiler) :
Define which C++ compiler to use
FLAGS=... : Extra user flags to pass to the compiler
EXTRALIBS=... : Extra user libraries to pass to the
linker

3. Running

setenv DIM_DNS_NODE <node name>, <node name> is the
complete name of the node where the DIM Name Server (Dns) will
run ex. hpplus003.cern.ch
Dns & ! Starts the Name Server
Did & !Starts the DIM Display
From then on you can start DIM servers and clients (some example
servers and clients source code is available in dim/src/examples) you
can start them by:

Test_server <server name>

Instructions for downloading, installing and running DIM on

http://dim.web.cern.ch/dim/dim_unix.html Page 66 of 68

07/22/2002

Test_client <client name> <server name>
In order to make your own servers and/or clients you have to link
them with …dim/<OS type>/libdim.a and with -lpthread (you can use
makefile_examples in the top directory as an example).

http://dim.web.cern.ch/dim/dim_v10r4.readme.txt Page 67 of 68

07/22/2002

 DIM version 10.4 Release Notes

Notes 1 and 2 for Unix Users only
NOTE 1: In order to "make" DIM two environment variables should be set:
 OS = one of {HP-UX, AIX, OSF1, Solaris, SunOS, LynxOS, Linux}
 DIMDIR = the path name of DIM's top level directory
 The user should then go to DIM's top level directory and do:
 > source .setup
 > gmake all
 Or, if there is no support for C++ on the machine:
 > gmake CPP=no all

NOTE 2: The Name Server (Dns), DID, servers and clients (if running in
 background) should be started whith the output redirected to a
 logfile ex:
 Dns </dev/null >& dns.log &

NOTE 3: The Version Number service provided by servers is now set to 1004
 (version 10.04).

25/4/2002
Changes for version 10.0:
 - All source files are now common to Windows and Unix flavours
 (Linux included). Directories src/win and src/unix no longer
 necessary.
 - Fixed hopefully all compiler warnings (especially on Solaris 8).
 - In order to avoid potential deadlocks all tcpip writes (dna_write)
 are done by a separate thread (the timer thread, via a special
 "immediate" queue). Except service updates and sending commands
 (dna_write_nowait) since they are not blocking and to preserve
 backward behaviour compatibility.
 - Optimized servers, clients and the name servers for large number
 of services
 - Modified error messages to be more explicit

01/5/2002
Changes/Bug Fixes for Version 10.1:
 - Fixed the DimRpc class, it would hang sometimes.
 - Fixed a problem in the "immediate" timer handler (too slow)
 - Added "const" to service names in DimInfo and DimService methods
 - changed print_date_time to dim_print_date_time and made it
 available to users
 - Open_dns didn't always return the correct value (DID wouldn't
 reconnect to on Dns restart)
 - Did (on Linux) now shows services in alphabetical order

06/5/2002
Changes/Bug Fixes for Version 10.2:
 - Fixed dtq.c and tcpip.c for Linux, dim_wait() would not always
 return when required
 - The distribution kit now also contains the shareable version of
 the DIM library for Linux - libdim.so
 The makefiles use the shareable version for creating Dns, Did
 and the examples (.setup adds dim/linux to LD_LIBRARY_PATH)

27/5/2002

http://dim.web.cern.ch/dim/dim_v10r4.readme.txt Page 68 of 68

07/22/2002

Changes/Bug Fixes for Version 10.3:
 - Changed dim include files not to include "windows.h" under
 windows. This was causing a conflict with Gaudi.
 (Had to change "DIM semaphores" from macros to subroutines)

18/7/2002
Changes/Bug Fixes for Version 10.4:
 - Two consecutive client requests for the same service would not
 implement the "stamped" flag properly (dic.c)
 - The DimBrowser class would not retreive service names containing
 the character "@". Fixed.
 - Re-fixed a bug that would make servers crash when clients exited
 while servers were updating a service (dis.c).
 - dtq_start_timer() did not always wait the requested amount of time.
 - Did (Linux version) now also prints timestamp and quality flag
 when Viewing service contents.

Please check the Manual for more information at:
 http://www.cern.ch/dim

