
1/5

wiki.lazarus.freepascal.org
/Show_Application_Title,_Version,_and_Company

Show Application Title, Version, and Company

From Free Pascal wiki

Jump to navigationJump to search

│ English (en) │ русский (ru) │

Overview

Windows

From its earliest versions, Microsoft Windows had the capability of storing version information etc. in an
executable file. Support for that was added to Delphi around v3, and was partly functional in Lazarus
0.9.24.

Linux

There is no implicit provision in the ELF file format for version numbers, copyright and so on, but Lazarus
stores this in resource sections. Reading the information back at runtime relies on FPC units, below is
some useful information.

macOS and iOS

On macOS, Lazarus file version information can be stored in two locations:

the MACH-O executable (like on Windows, Linux); see below
the application bundle (if present) in a plist. See Mac Show Application Title, Version, and Company
for details.

Implementations

FPC 3.0+

Implementation in FPC 3.0.x using fcl-res: see announcement in User Changes 3.0.

The code below shows how to get executable info out of:

.exe/.dll/.ocx files (Windows format)
Lazarus-compiled ELF executables (Linux)
Lazarus-compiled MACH-O executables (macOS)

program printfileinfo;


https://wiki.lazarus.freepascal.org/Show_Application_Title,_Version,_and_Company#Windows
https://undefined/Show_Application_Title,_Version,_and_Company/ru
https://undefined/Mac_Show_Application_Title,_Version,_and_Company
https://undefined/fcl-res
https://undefined/User_Changes_3.0#TVersionInfo_.28fileinfo_unit.29_re-implemented_in_a_platform_independent_way


2/5

{ 

  Displays file version info for 


- Windows PE executables 


- Linux ELF executables (compiled by Lazarus)


- macOS MACH-O executables (compiled by Lazarus)


  Runs on Windows, Linux, macOS


}

{$mode objfpc}{$H+}


{$ifdef mswindows}{$apptype console}{$endif}


uses

  {$IFDEF UNIX}{$IFDEF UseCThreads}


  cthreads,

  {$ENDIF}{$ENDIF}


  Classes,sysutils

  // FPC 3.0 fileinfo reads exe resources as long as you register the 

appropriate units


  , fileinfo

  , winpeimagereader {need this for reading exe info}


  , elfreader {needed for reading ELF executables}


  , machoreader {needed for reading MACH-O executables}


  ;

var

  FileVerInfo: TFileVersionInfo;


{$R *.res}

begin

  FileVerInfo:=TFileVersionInfo.Create(nil);


  try

    FileVerInfo.ReadFileInfo;


    writeln('Company: ',FileVerInfo.VersionStrings.Values['CompanyName']);


    writeln('File description: 

',FileVerInfo.VersionStrings.Values['FileDescription']);


    writeln('File version: 

',FileVerInfo.VersionStrings.Values['FileVersion']);


    writeln('Internal name: 

',FileVerInfo.VersionStrings.Values['InternalName']);


    writeln('Legal copyright: 

',FileVerInfo.VersionStrings.Values['LegalCopyright']);


    writeln('Original filename: 

',FileVerInfo.VersionStrings.Values['OriginalFilename']);


    writeln('Product name: 



3/5

',FileVerInfo.VersionStrings.Values['ProductName']);


    writeln('Product version: 

',FileVerInfo.VersionStrings.Values['ProductVersion']);


  finally

    FileVerInfo.Free;


  end;

end.

Implementations using legacy FPC 2.6.x

Uses fcl-res; contribution via the mailing list: [1]

Use this like

uses

  resource, versiontypes, versionresource;


 FUNCTION resourceVersionInfo: STRING;


 

 (* Unlike most of AboutText (below), this takes significant activity at run-  

*)

 (* time to extract version/release/build numbers from resource information    

*)

 (* appended to the binary.                                                    

*)

 

 VAR     Stream: TResourceStream;


         vr: TVersionResource;


         fi: TVersionFixedInfo;


 

 BEGIN

   RESULT:= '';

   TRY

 

 (* This raises an exception if version info has not been incorporated into 

the  *)

 (* binary (Lazarus Project -> Project Options -> Version Info -> Version      

*)

 (* numbering).                                                                

*)

 

     Stream:= TResourceStream.CreateFromID(HINSTANCE, 1, PChar(RT_VERSION));


     TRY

       vr:= TVersionResource.Create;


       TRY

         vr.SetCustomRawDataStream(Stream);


https://undefined/fcl-res
http://lists.lazarus.freepascal.org/pipermail/lazarus/attachments/20100723/8db6b97e/attachment.ksh


4/5

         fi:= vr.FixedInfo;

         RESULT := 'Version ' + IntToStr(fi.FileVersion[0]) + '.' + 

IntToStr(fi.FileVersion[1]) +


                ' release ' + IntToStr(fi.FileVersion[2]) + ' build ' + 

IntToStr(fi.FileVersion[3]) + eol;


         vr.SetCustomRawDataStream(nil)


       FINALLY

         vr.Free

       END

     FINALLY

       Stream.Free

     END

   EXCEPT

   END

 END { resourceVersionInfo } ;


Using vinfo: [2] and [3]

Related tips
SVN/Git/Hg/Mercurial revision

Use $(lazarusdir)/tools/svn2revisioninc to get revision number (from a subversion, git or mercurial
repository) into a file revision.inc, e.g. something like:

// Created by Svn2RevisionInc


const RevisionStr = '43594';


Unix-only hacks
These work with Linux on various platforms, and probably with Solaris provided that the GNU-derived
utilities are installed.

Getting Subversion revision information as a program-accessible string

Put this into Project options -> Compilation -> Execute before -> Command:

/bin/sh -c "echo -n C`svnversion -n`C |tr A-G %-+ >project_svnrevision.inc"


Note quote and backtick positions. The tr is converting C into another layer of quotes which is necessary
for things to work as required.

Put this into the program:

http://forum.lazarus.freepascal.org/index.php?topic=12435.0
http://forum.lazarus.freepascal.org/index.php?topic=13957.0


5/5

   (*$IFDEF UNIX   *)


           rev= (*$I project_svnrevision.inc *) ;


   (*$ELSE         *)


           rev= 'unimplemented';


   (*$ENDIF        *)


Note that that has to be a string, since the revision number will have a non-numeric suffix if the project
has been updated since it was last committed.

Renaming the final executable to include platform and timestamp

Put this into Project options -> Paths -> Unit output directory:

lib/$(TargetCPU)-$(TargetOS)


Put this into Project options -> Paths -> Target file name:

UnyokedBackend-$(TargetCPU)-$(TargetOS)-$(LCLWidgetType)


Make sure that "Apply conventions" is ticked (checked). This might vary slightly according to IDE and
compiler/linker versions.

Put this into Project options -> Compilation -> Execute after -> Command:

 /bin/sh -c "mv 

libunyokedbackend-$(TargetCPU)-$(TargetOS)-$(LCLWidgetType).so 

UnyokedBackend-$(TargetCPU)-$(TargetOS)-$(LCLWidgetType).`date +%F.%R`.so"


That should be a single line. Note quote and backtick positions.

See also
TVersionResource

Retrieved from "http://wiki.freepascal.org/index.php?
title=Show_Application_Title,_Version,_and_Company&oldid=139378"

https://undefined/TVersionResource
http://wiki.freepascal.org/index.php?title=Show_Application_Title,_Version,_and_Company&oldid=139378

