
1/21

wiki.freepascal.org
/Multithreaded_Application_Tutorial

Multithreaded Application Tutorial

│ Deutsch (de) │ English (en) │ español (es) │ français (fr) │ 日本語 (ja) │ polski (pl) │ português (pt) │ русский (ru) │

slovenčina (sk) │ 中文（中国大陆）‎ (zh_CN) │

Overview
This page will try to explain how to write and debug a multi-threaded application with Free Pascal and
Lazarus. A multi-threaded application is one that creates two or more threads of execution that work at
the same time. If you are new to multi-threading, please read the paragraph "Do you need multi-
threading?" to determine whether it is really required; this may save you many headaches.

One of the threads is called the Main Thread. The Main Thread is the one that is created by the
Operating System once our application starts. The Main Thread must be the only thread that updates the
components that interfaces with the user: otherwise, the application may hang.

The main idea is that the application can do some processing in background in a second thread while the
user can continue working using the main thread.

Another use of threads is just to have a better responding application. If you create an application, and
when the user presses a button the application starts processing a big job... and while processing, the
screen stops responding, and gives the user the impression that the application is frozen, a poor or
misleading impression will be created. If the big job runs in a second thread, the application keeps
responding (almost) as if it were idle. In this case it is a good idea, before starting the thread, to disable
the buttons of the form to avoid the user starting more than one thread for the job.

Another use of multi-threading may be a server application that is able to respond to many clients at the
same time.

Do you need multi-threading?
If you are new to multi-threading and you only want to make your application more responsive while your
application performs moderately long-running tasks, then multi-threading may be more than is required.
Multi-threaded applications are always more difficult to debug and they are often much more complex; in
many cases you don't need multi-threading. A single thread is enough. If you can split up the time-
consuming task into several smaller chunks, then instead you should use
Application.ProcessMessages. This method allows the LCL to handle all waiting messages and
returns.
The central idea is to call Application.ProcessMessages at regular intervals during the execution
of a long-running task to determine whether the user has clicked on something, or a progress indicator
must be repainted, and so on.

https://wiki.freepascal.org/Multithreaded_Application_Tutorial
https://undefined/Multithreaded_Application_Tutorial/de
https://undefined/Multithreaded_Application_Tutorial/es
https://undefined/Multithreaded_Application_Tutorial/fr
https://undefined/Multithreaded_Application_Tutorial/ja
https://undefined/Multithreaded_Application_Tutorial/pl
https://undefined/Multithreaded_Application_Tutorial/pt
https://undefined/Multithreaded_Application_Tutorial/ru
https://undefined/Multithreaded_Application_Tutorial/sk
https://undefined/Multithreaded_Application_Tutorial/zh_CN

2/21

For example: Reading a big file and process it. See
examples/multithreading/singlethreadingexample1.lpi.

Multi-threading is only needed for

blocking handles, like network communications
using multiple processors simultaneously (SMP)
algorithms and library calls that must be called through an API and as such cannot be split up into
smaller parts.

If you want to use multi-threading to increase speed by using multiple processors simultaneously, check if
your current program now uses all 100% resources of 1 core CPU (for example, your program can
actively use input-output operations, e.g. writing to file; this takes a lot of time, but doesn't load CPU; in
this case your program will not be faster with multiple threads). Also check if optimisation level is set to
maximum (3). When switching optimisation level from 1 to 3, a program may become about 5 times
faster.

Units needed for a multi-threaded application

You don´t need any special unit for this to work with Windows.
However with Linux, macOS and
FreeBSD, you need the cthreads unit and it must be the first used unit of the project (the program source,
usually the .lpr file)! In cases where several units like cthreads, cmem and cwstrings are recommended to
be placed first, due to how the units work a sensible order is cmem, cthreads and then cwstrings.

So, your Lazarus application code should look like:

program MyMultiThreadedProgram;

{$mode objfpc}{$H+}

uses

{$ifdef unix}

 cthreads,

 cmem, // the c memory manager is on some systems much faster for multi-

threading

{$endif}

 Interfaces, // this includes the LCL widgetset

 Forms

 { you can add units here },

If you forget this and you use TThread you will get this error on startup:

 This binary has no thread support compiled in.

 Recompile the application with a thread-driver in the program uses clause

before other units using thread.

https://undefined/File:Note-icon.png

3/21

Note: If you get a Linker error about "mcount" not found. Then you use some unit that contains some
multithreaded code and you need to add the cthreads unit or use smart linking.

Note: If you get the error: "Project raised exception class 'RunError(232)'" in procedure
SYSTEM_NOTHREADERROR then your code requires threading and you need to add the cthreads unit.

Pure FPC example

Below code gives a very simple example. Tested with FPC 3.0.4 on Win7.

Program ThreadTest;

{test multi threading capability }

{

 OUTPUT

thread 1 started

thread 1 thri 0 Len(S)= 1

thread 1 thri 1 Len(S)= 2

thread 1 thri 2 Len(S)= 3

thread 1 thri 3 Len(S)= 4

thread 1 thri 4 Len(S)= 5

thread 1 thri 5 Len(S)= 6

thread 1 thri 6 Len(S)= 7

thread 1 thri 7 Len(S)= 8

thread 1 thri 8 Len(S)= 9

thread 1 thri 9 Len(S)= 10

thread 1 thri 10 Len(S)= 11

thread 1 thri 11 Len(S)= 12

thread 1 thri 12 Len(S)= 13

thread 1 thri 13 Len(S)= 14

thread 1 thri 14 Len(S)= 15

thread 2 started

thread 3 started

thread 1 thri 15 Len(S)= 16

thread 2 thri 0 Len(S)= 1

thread 3 thri 0 Len(S)= 1

thread 1 thri 16 Len(S)= 17

...

...

thread 5 thri 997 Len(S)= 998

thread 5 thri 998 Len(S)= 999

thread 5 thri 999 Len(S)= 1000

thread 5 finished

thread 10 thri 828 Len(S)= 829

https://undefined/index.php?title=smart_linking&action=edit&redlink=1
https://undefined/File:Note-icon.png

4/21

thread 9 thri 675 Len(S)= 676

thread 4 thri 656 Len(S)= 657

thread 10 thri 829 Len(S)= 830

thread 9 thri 676 Len(S)= 677

thread 9 thri 677 Len(S)= 678

thread 10 thri 830 Len(S)= 831

thread 10 thri 831 Len(S)= 832

thread 10 thri 832 Len(S)= 833

thread 10 thri 833 Len(S)= 834

thread 10 thri 834 Len(S)= 835

thread 10 thri 835 Len(S)= 836

thread 10 thri 836 Len(S)= 837

thread 10 thri 837 Len(S)= 838

thread 10 thri 838 Len(S)= 839

thread 10 thri 839 Len(S)= 840

thread 9 thri 678 Len(S)= 679

...

...

thread 4 thri 994 Len(S)= 995

thread 4 thri 995 Len(S)= 996

thread 4 thri 996 Len(S)= 997

thread 4 thri 997 Len(S)= 998

thread 4 thri 998 Len(S)= 999

thread 4 thri 999 Len(S)= 1000

thread 4 finished

10

	

}

uses

 {$ifdef unix}cthreads, {$endif} sysutils;

const

 threadcount = 10;

 stringlen = 1000;

var

 finished : longint;

threadvar

 thri : ptrint;

function f(p : pointer) : ptrint;

var

5/21

 s : ansistring;

begin

 Writeln('thread ',longint(p),' started');

 thri:=0;

 while (thri<stringlen) do begin

 s:=s+'1'; { create a delay }

 writeln('thread ',longint(p),' thri ',thri,' Len(S)= ',length(s));

	 inc(thri);

 end;

 Writeln('thread ',longint(p),' finished');

 InterLockedIncrement(finished);

 f:=0;

end;

var

 i : longint;

Begin

 finished:=0;

 for i:=1 to threadcount do

 BeginThread(@f,pointer(i));

 while finished<threadcount do ;

 Writeln(finished);

End.

The TThread Class

The following example can be found in the examples/multithreading/ directory.

To create a multi-threaded application, the easiest way is to use the TThread Class. This class permits
the creation of an additional thread (alongside the main thread) in a simple way. Normally you are
required to override only 2 methods: the Create constructor, and the Execute method.

In the constructor, you will prepare the thread to run. You will set the initial values of the variables or
properties you need. The original constructor of TThread requires a parameter called Suspended. As you
might expect, setting Suspended = True will prevent the thread starting automatically after the creation. If
Suspended = False, the thread will start running just after the creation. If the thread is created
suspended, then it will run only after the Start method is called.

Note: Method Resume is deprecated since FPC 2.4.4. It is replaced by Start.

As of FPC version 2.0.1 and later, TThread.Create also has an implicit parameter for Stack Size. You can
now change the default stack size of each thread you create if you need it. Deep procedure call

https://undefined/File:Note-icon.png
http://wiki.freepascal.org/User_Changes_2.4.4#TThread.Suspend_and_TThread.Resume_have_been_deprecated

6/21

recursions in a thread are a good example. If you don't specify the stack size parameter, a default OS
stack size is used.

In the overridden Execute method you will write the code that will run on the thread.

The TThread class has one important property: Terminated : boolean;

If the thread has a loop (and this is typical), the loop should be exited when Terminated is true (it is false
by default). Within each pass, the value of Terminated must be checked, and if it is true then the loop
should be exited as quickly as is appropriate, after any necessary cleanup. Bear in mind that the
Terminate method does not do anything by default: the .Execute method must explicitly implement
support for it to quit its job. The Terminate method only sets the Terminated property to True.

As we explained earlier, the thread should not interact with the visible components. Updates to visible
components must be made within the context of the main thread.

To do this, a TThread method called Synchronize exists. Synchronize requires a method within the thread
(that takes no parameters) as an argument. When you call that method through
Synchronize(@MyMethod), the thread execution will be paused, the code of MyMethod will be called
from the main thread, and then the thread execution will be resumed.

The exact working of Synchronize depends on the platform, but basically it does this:

it posts a message onto the main message queue and goes to sleep
eventually the main thread processes the message and calls MyMethod. This way MyMethod is
called without context, that means not during a mouse down event or during paint event, but after.
after the main thread executed MyMethod, it wakes the sleeping Thread and processes the next
message
the Thread then continues.

There is another important property of TThread: FreeOnTerminate. If this property is true, the thread
object is automatically freed when the thread execution (.Execute method) stops. Otherwise the
application will need to free it manually.

Example:

 Type

 TMyThread = class(TThread)

 private

 fStatusText : string;

 procedure ShowStatus;

 protected

 procedure Execute; override;

 public

 Constructor Create(CreateSuspended : boolean);

 end;

 constructor TMyThread.Create(CreateSuspended : boolean);

 begin

7/21

 inherited Create(CreateSuspended);

 FreeOnTerminate := True;

 end;

 procedure TMyThread.ShowStatus;

 // this method is executed by the mainthread and can therefore access all

GUI elements.

 begin

 Form1.Caption := fStatusText;

 end;

 procedure TMyThread.Execute;

 var

 newStatus : string;

 begin

 fStatusText := 'TMyThread Starting...';

 Synchronize(@Showstatus);

 fStatusText := 'TMyThread Running...';

 while (not Terminated) and ([any condition required]) do

 begin

 ...

 [here goes the code of the main thread loop]

 ...

 if NewStatus <> fStatusText then

 begin

 fStatusText := newStatus;

 Synchronize(@Showstatus);

 end;

 end;

 end;

In the application:

 var

 MyThread : TMyThread;

 begin

 MyThread := TMyThread.Create(True); // This way it doesn't start

automatically

 ...

 [Here the code initialises anything required before the threads starts

executing]

 ...

 MyThread.Start;

 end;

8/21

If you want to make your application more flexible you can create an event for the thread; this way your
synchronized method won't be tightly coupled with a specific form or class: you can attach listeners to the
thread's event. Here is an example:

 Type

 TShowStatusEvent = procedure(Status: String) of Object;

 TMyThread = class(TThread)

 private

 fStatusText : string;

 FOnShowStatus: TShowStatusEvent;

 procedure ShowStatus;

 protected

 procedure Execute; override;

 public

 Constructor Create(CreateSuspended : boolean);

 property OnShowStatus: TShowStatusEvent read FOnShowStatus write

FOnShowStatus;

 end;

 constructor TMyThread.Create(CreateSuspended : boolean);

 begin

 inherited Create(CreateSuspended);

 FreeOnTerminate := True;

 end;

 procedure TMyThread.ShowStatus;

 // this method is executed by the mainthread and can therefore access all

GUI elements.

 begin

 if Assigned(FOnShowStatus) then

 begin

 FOnShowStatus(fStatusText);

 end;

 end;

 procedure TMyThread.Execute;

 var

 newStatus : string;

 begin

 fStatusText := 'TMyThread Starting...';

 Synchronize(@Showstatus);

 fStatusText := 'TMyThread Running...';

 while (not Terminated) and ([any condition required]) do

 begin

9/21

 ...

 [here goes the code of the main thread loop]

 ...

 if NewStatus <> fStatusText then

 begin

 fStatusText := newStatus;

 Synchronize(@Showstatus);

 end;

 end;

 end;

In the application:

 Type

 TForm1 = class(TForm)

 Button1: TButton;

 Label1: TLabel;

 procedure FormCreate(Sender: TObject);

 procedure FormDestroy(Sender: TObject);

 private

 { private declarations }

 MyThread: TMyThread;

 procedure ShowStatus(Status: string);

 public

 { public declarations }

 end;

 procedure TForm1.FormCreate(Sender: TObject);

 begin

 inherited;

 MyThread := TMyThread.Create(true);

 MyThread.OnShowStatus := @ShowStatus;

 end;

 procedure TForm1.FormDestroy(Sender: TObject);

 begin

 MyThread.Terminate;

 // FreeOnTerminate is true so we should not write:

 // MyThread.Free;

 inherited;

 end;

 procedure TForm1.Button1Click(Sender: TObject);

 begin

10/21

 MyThread.Start;

 end;

 procedure TForm1.ShowStatus(Status: string);

 begin

 Label1.Caption := Status;

 end;

Special things to take care of

Stack checking under Windows

There is a potential headache in Windows with Threads if you use the -Ct (stack check) switch.
For
reasons not so clear the stack check will "trigger" on any TThread.Create if you use the default stack
size.
The only work-around for the moment is to simply not use -Ct switch. Note that it does NOT cause
an exception in
the main thread, but in the newly created one. This "looks" like if the thread was never
started.

A good code to check for this and other exceptions which can occur in thread creation is:

MyThread := TThread.Create(False);

if Assigned(MyThread.FatalException) then

 raise MyThread.FatalException;

This code will assure that any exception which occurred during thread creation will be raised in your main
thread.

GetDC function in Windows

The GetDC (and GetDCEx) function retrieves a handle to a device context (DC) for the client area of a
specified window or for the entire screen. It can be used, for example, to take a screenshot. Note
however that it is not thread safe: the handle to the DC can only be used by a single thread at any one
time as documented here.

Multithreading in packages

Packages which uses multi-threading should add the -dUseCThreads flag to the custom usage options.
Open the package editor of the package, then Options > Usage > Custom and add -dUseCThreads. This
will define this flag to all projects and packages using this package, including the IDE. The IDE and all
new applications created by the IDE have already the following code in their .lpr file:

uses

 {$IFDEF UNIX}{$IFDEF UseCThreads}

 cthreads,

 cmem, // the c memory manager is on some systems much faster for multi-

https://undefined/Developing_with_Graphics#Taking_a_screenshot_of_the_screen
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getdc

11/21

threading

 {$ENDIF}{$ENDIF}

Heaptrc

You can not use the -gh switch with the cmem unit. The -gh switch uses the heaptrc unit, which extends
the heap manager. Therefore the heaptrc unit must be used after the cmem unit.

uses

 {$IFDEF UNIX}{$IFDEF UseCThreads}

 cthreads,

 cmem, // the c memory manager is on some systems much faster for multi-

threading

 {$ENDIF}{$ENDIF}

 heaptrc,

Initialization and Finalization

To initialize the thread object itself, you can either start it suspended and set its properties and/or create a
new constructor and call the inherited constructor.

Note: Using the AfterConstruction when CreateSuspended=false is dangerous, as the thread has already
started.

On the other hand, the destructor may be used to finalize the object's ressources.

type

 TMyThread = class(TThread)

 private

 fRTLEvent: PRTLEvent;

 public

 procedure Create(SomeData: TSomeObject); override;

 destructor Destroy; override;

 end;

procedure TMyThread.Create(SomeData: TSomeObject; CreateSuspended: boolean);

begin

 // example: set up events, critical sections and other ressources like

files or database connections

 RTLEventCreate(fRTLEvent);

 inherited Create(CreateSuspended);

end;

destructor TMyThread.Destroy;

begin

 RTLeventDestroy(fRTLEvent);

12/21

 inherited Destroy;

end;

Non LCL program

TThread.Synchronize requires that the main thread regularly calls CheckSynchronize. The LCL does that
in its loop. If you don't use the LCL event loop you must call it yourself.

SMP Support
The good news is that if your application works properly multi-threaded this way, it is already SMP
enabled!

Debugging Multi-threaded Applications with Lazarus

The debugging on Lazarus requires GDB and is rapidly becoming more and more fully featured and
stable. However, there still exists a few Linux distributions with some problems.

Debugging output

In a single threaded application, you can simply write to console/terminal/whatever and the order of the
lines is the same as they were written.
In multi-threaded application things are more complicated. If two
threads are writing, say a line is written by thread A before a line by thread B, then the lines are not
necessarily written in that order. It can even happen, that a thread writes its output, while the other thread
is writing a line.While under linux (maybe) you'll get proper DebugLn() output, under win32 you can get
exceptions (probably DiskFull) because of DebugLn() usage outside of main thread.So, to avoid
headaches use DebugLnThreadLog() mentioned below.

The LCLProc unit contains several functions, to let each thread write to its own log file:

 procedure DbgOutThreadLog(const Msg: string); overload;

 procedure DebuglnThreadLog(const Msg: string); overload;

 procedure DebuglnThreadLog(Args: array of const); overload;

 procedure DebuglnThreadLog; overload;

For example:
Instead of writeln('Some text ',123); use

 DebuglnThreadLog(['Some text ',123]);

This will append a line 'Some text 123' to Log<PID>.txt, where <PID> is the process ID of the current
thread.

It is a good idea to remove the log files before each run:

 rm -f Log* && ./project1

Linux

https://undefined/DebugLn

13/21

If you try to debug a multi-threaded application on Linux, you will have one big problem: the Desktop
Manager on X server can hang. This happens for instance when the application has captured the
mouse/keyboard and was paused by gdb and the X server waits for your application. When that happens
you can simply log in from another computer and kill the gdb or exit out of that session by pressing
CTRL+ALT+F3 and kill gdb. Alternatively you can restart the window manager: enter sudo /etc/init.d/gdm
restart. This will restart the desktop manager and get you back into your desktop.

Since it depends where gdb stops your program in some cases some tricks may help: for Ubuntu x64 set
the Project options for debugging required extra information file...

 Project Options -> Compiler Options -> Linking -> Debugging: Check Use

external gdb debug symbols file (-Xg).

The other option is to open another X desktop, run the IDE/gdb on one and the application on the other,
so that only the test desktop freezes. Create a new instance of X with:

 X :1 &

It will open, and when you switch to another desktop (the one you are working with pressing
CTRL+ALT+F7), you will be able to go back to the new graphical desktop with CTRL+ALT+F8 (if this
combination does not work, try with CTRL+ALT+F2... this one worked on Slackware).

Then you could, if you want, create a desktop session on the X started with:

 gnome-session --display=:1 &

Then, in Lazarus, on the run parameters dialog for the project, check "Use display" and enter :1.

Now the application will run on the second X server and you will be able to debug it on the first one.

This was tested with Free Pascal 2.0 and Lazarus 0.9.10 on Windows and Linux.

Instead of creating a new X session, one can use Xnest. Xnest is a X session on a window. Using it X
server didn't lock while debugging threads, and it's much easier to debug without keeping changing
terminals.

The command line to run Xnest is

 Xnest :1 -ac

to create a X session on :1, and disabling access control.

Lazarus Widgetset Interfaces
The win32, the gtk and the carbon interfaces support multi-threading. This means, TThread, critical
sections and Synchronize work. But they are not thread safe. This means only one thread at a time can
access the LCL. And since the main thread should never wait for another thread, it means only the main

http://www.slackware.com/
http://en.wikipedia.org/wiki/Xnest

14/21

thread is allowed to access the LCL, which means anything that has to do with TControl, Application and
LCL widget handles.
There are some thread safe functions in the LCL. For example most of the functions
in the FileUtil unit are thread safe.

Using SendMessage/PostMessage to communicate between threads

Only one thread in an application should call LCL APIs, usually the main thread. Other threads can make
use of the LCL through a number of indirect methods, one good option being the usage of SendMessage
or PostMessage. LCLIntf.SendMessage and LCLIntf.PostMessage will post a message directed to a
window in the message pool of the application.

See also the documentation for these routines:

SendMessage
PostMessage

The difference between SendMessage and PostMessage is the way that they return control to the calling
thread. Like Synchronize, SendMessage blocks and control is not returned until the window that the
message was sent to has completed processing it; however under certain circumstances SendMessage
might attempt to optimise processing by remaining in the context of the thread that called it. With
PostMessage control is returned immediately up to some system-defined maximum number of enqueued
messages and as long as space remains on the heap for attached data.

In both cases the procedure handling the message (see below) should avoid calling
application.ProcessMessages, since this might cause a second message to be dispatched which will be
handled reentrantly. If this is unavoidable then it would probably be preferable to use some other
mechanism to transfer serialised events between threads.

Here is an example of how a secondary thread could send text to be displayed in an LCL control to the
main thread:

const

 WM_GOT_ERROR = LM_USER + 2004;

 WM_VERBOSE = LM_USER + 2005;

procedure VerboseLog(Msg: string);

var

 PError: PChar;

begin

 if MessageHandler = 0 then Exit;

 PError := StrAlloc(Length(Msg)+1);

 StrCopy(PError, PChar(Msg));

 PostMessage(formConsole.Handle, WM_VERBOSE, Integer(PError), 0);

end;

And an example of how to handle this message from a window:

http://lazarus-ccr.sourceforge.net/docs/lcl/lclintf/sendmessage.html
http://lazarus-ccr.sourceforge.net/docs/lcl/lclintf/postmessage.html

15/21

const

 WM_GOT_ERROR = LM_USER + 2004;

 WM_VERBOSE = LM_USER + 2005;

type

 { TformConsole }

 TformConsole = class(TForm)

 DebugList: TListView;

 // ...

 private

 procedure HandleDebug(var Msg: TLMessage); message WM_VERBOSE;

 end;

var

 formConsole: TformConsole;

implementation

....

{ TformConsole }

procedure TformConsole.HandleDebug(var Msg: TLMessage);

var

 Item: TListItem;

 MsgStr: PChar;

 MsgPasStr: string;

begin

 MsgStr := PChar(Msg.wparam);

 MsgPasStr := StrPas(MsgStr);

 Item := DebugList.Items.Add;

 Item.Caption := TimeToStr(SysUtils.Now);

 Item.SubItems.Add(MsgPasStr);

 Item.MakeVisible(False);

// Followed by something like

 TrayControl.SetError(MsgPasStr);

 StrDispose(MsgStr)

end;

end.

16/21

When you get on the Linux x64 machine an error: "Project XY raised exception class 'External:
SIGSEGV'" you have to change "Integer(PError)" to "PtrInt(PError)" in procedure "VerboseLog". Modified
line have to look like:

 PostMessage(formConsole.Handle, WM_VERBOSE, PtrInt(PError), 0);

Critical sections

A critical section is an object used to make sure, that some part of the code is executed only by one
thread at a time. A critical section needs to be created/initialized before it can be used and be freed when
it is not needed anymore.

There are two ways you use critical sections, from the RTL or from LCL. The text below shows the RTL
model and shows the LCL alternatives as a comment, the only difference is the method names.

Critical sections are normally used this way:

// uses LCLIntf, LCLType;

the necessary RTL units will almost certainly already be mentioned.

Declare the section (globally for all threads which should access the section):

MyCriticalSection: TRTLCriticalSection;

// MyCriticalSection : TCriticalSection;

Create the section:

InitCriticalSection(MyCriticalSection);

//InitializeCriticalSection(MyCriticalSection);

Run some threads. Doing something exclusively:

EnterCriticalSection(MyCriticalSection);

try

 // access some variables, write files, send some network packets, etc

finally

 LeaveCriticalSection(MyCriticalSection);

end;

// RTL and LCL use same syntax, thats nice.

After all threads terminated, free it:

DoneCriticalSection(MyCriticalSection);

// DeleteCriticalSection(MyCriticalSection);

As an alternative, you can use a TCriticalSection object. The creation does the initialization, the Enter
method does the EnterCriticalSection, the Leave method does the LeaveCriticalSection and the

17/21

destruction of the object does the deletion.

Note that a critical section does not protect against the same thread entering the same block of code,
only against different threads. For that reason it cannot be used to protect against e.g. reentry of a
message handler (see the section above).

For example: 5 threads incrementing a counter.
See
lazarus/examples/multithreading/criticalsectionexample1.lpi

Warning: There are two sets of the above four functions. The RTL and the LCL ones. The LCL ones are
defined in the unit LCLIntf and LCLType. Both work pretty much the same. You can use both at the same
time in your application, but you should not use a RTL function within an LCL Critical Section and vice
versa.

Sharing Variables

If some threads share a variable, that is read only, then there is nothing to worry about. Just read it.
But if
one or several threads changes the variable, then you must make sure, that only one thread accesses
the variables at a time.

For example: 5 threads incrementing a counter.
See
lazarus/examples/multithreading/criticalsectionexample1.lpi

Waiting for another thread
If a thread A needs a result of another thread B, it must wait, till B has finished.

Important: The main thread should never wait for another thread. Instead use Synchronize (see above).

See for an example: lazarus/examples/multithreading/waitforexample1.lpi

{ TThreadA }

procedure TThreadA.Execute;

begin

 Form1.ThreadB:=TThreadB.Create(false);

 // create event

 WaitForB:=RTLEventCreate;

 while not Application.Terminated do begin

 // wait infinitely (until B wakes A)

 RtlEventWaitFor(WaitForB);

 writeln('A: ThreadB.Counter='+IntToStr(Form1.ThreadB.Counter));

 end;

end;

https://undefined/File:Warning-icon.png

18/21

{ TThreadB }

procedure TThreadB.Execute;

var

 i: Integer;

begin

 Counter:=0;

 while not Application.Terminated do begin

 // B: Working ...

 Sleep(1500);

 inc(Counter);

 // wake A

 RtlEventSetEvent(Form1.ThreadA.WaitForB);

 end;

end;

Note: RtlEventSetEvent can be called before RtlEventWaitFor. Then RtlEventWaitFor will return
immediately. Use RTLeventResetEvent to clear a flag.

Fork

When forking in a multi-threaded application, be aware that any threads created and running BEFORE
the fork (or fpFork) call, will NOT be running in the child process. As stated on the fork() man page, any
threads that were running before the fork call, their state will be undefined.

So be aware of any threads initializing before the call (including on the initialization section). They will
NOT work.

Parallel procedures/loops

A special case of multi threading is running a single procedure in parallel. See Parallel procedures.

Distributed computing
The next higher steps after multi threading is running the threads on multiple machines.

You can use one of the TCP suites like synapse, lnet or indy for communications. This gives you
maximum flexibility and is mostly used for loosely connected Client / Server applications.
You can use message passing libraries like MPICH, which are used for HPC (High Performance
Computing) on clusters.

https://undefined/File:Note-icon.png
https://undefined/Parallel_procedures
https://undefined/MPICH

19/21

External threads

To make Free Pascal's threading system work properly, each newly created FPC thread needs to be
initialized (more exactly, the exception, I/O system and threadvar system per thread needs to be
initialized so threadvars and heap are working). That is fully automatically done for you if you use
BeginThread (or indirectly by using the TThread class). However, if you use threads that were created
without BeginThread (i.e. external threads), additional work (currently) might be required. External
threads also include those that were created in external C libraries (.DLL/.so).

Things to consider when using external threads (might not be needed in all or future compiler versions):

Do not use external threads at all - use FPC threads. If can you can get control over how the thread
is created, create the thread by yourself by using BeginThread.

If the calling convention doesn't fit (e.g. if your original thread function needs cdecl calling convention but
BeginThread needs pascal convention, create a record, store the original required thread function in it,
and call that function in your pascal thread function:

type

 TCdeclThreadFunc = function (user_data:Pointer):Pointer;cdecl;

 PCdeclThreadFuncData = ^TCdeclThreadFuncData;

 TCdeclThreadFuncData = record

 Func: TCdeclThreadFunc; //cdecl function

 Data: Pointer; //original data

 end;

// The Pascal thread calls the cdecl function

function C2P_Translator(FuncData: pointer) : ptrint;

var

 ThreadData: TCdeclThreadFuncData;

begin

 ThreadData := PCdeclThreadFuncData(FuncData)^;

 Result := ptrint(ThreadData.Func(ThreadData.Data));

end;

procedure CreatePascalThread;

var

 ThreadData: PCdeclThreadFuncData;

begin

 New(ThreadData);

 // this is the desired cdecl thread function

 ThreadData^.Func := func;

 ThreadData^.Data := user_data;

 // this creates the Pascal thread

20/21

 BeginThread(@C2P_Translator, ThreadData);

end;

Initialize the FPC's threading system by creating a dummy thread. If you don't create any Pascal
thread in your app, the thread system won't be initialized (and thus threadvars won't work and thus
heap will not work correctly).

type

 tc = class(tthread)

 procedure execute;override;

 end;

 procedure tc.execute;

 begin

 end;

{ main program }

begin

 { initialise threading system }

 with tc.create(false) do

 begin

 waitfor;

 free;

 end;

 { ... your code follows }

end.

(After the threading system is initialized, the runtime may set the system variable "IsMultiThread" to true
which is used by FPC routines to perform locks here and there. You should not set this variable
manually.)

If for some reason this doesn't work for you, try this code in your external thread function:

function ExternalThread(param: Pointer): LongInt; stdcall;

var

 tm: TThreadManager;

begin

 GetThreadManager(tm);

 tm.AllocateThreadVars;

 InitThread(1000000); // adjust inital stack size here

 { do something threaded here ... }

21/21

 Result:=0;

end;

Identifying external threads

Sometimes you even don't know if you have to deal with external threads (eg if some C library makes a
callback). This can help to analyse this:

1. Ask the OS for the ID of the current thread at your application's start

GetCurrentThreadID() // Windows;

GetThreadID() // Darwin (macOS); FreeBSD;

TThreadID(pthread_self) // Linux;

2. Ask again for the ID of the current thread inside the thread function and compare this with the result of
step 1.

Give up some time slice

ThreadSwitch - Note: may be ignored.

Note: Do not use the Windows trick Sleep(0) as this won't work on all platforms.

See also

https://undefined/callback
https://www.freepascal.org/docs-html/rtl/system/threadswitch.html
https://undefined/File:Note-icon.png
https://www.freepascal.org/docs-html/rtl/sysutils/sleep.html

